{ "cells": [ { "attachments": { "GenericArchitecture.jpg": { "image/jpeg": "/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAMaBCIDASIAAhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAQFAQMGAgf/xAAWAQEBAQAAAAAAAAAAAAAAAAAAAQL/2gAMAwEAAhADEAAAAe/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKws1eLBXiwV4sFeLBXiwV4sFeLBXiwV4sFeLBXiwV4sFeLBXiwV4sFeLBXiwV4sFeLBXiwV4sFeLBX6i1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAr7CvNtZi7jzu5Osrud3Jbjp3MWMaZiTqapnB4l71zeiOrcgrr3BWZ1WnZClrrfmtVz2airDsFHPWbp4yWdc5vzHTORt7NkbReS73D6rO33cjoXtXFWJfbuS3nTOOuS4r7CvLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvsK80RugRzPjqRzDp1nN3+0vMzrgnJWN4XndPUIpq7qllH7uS1+2T6jmPXSq5WdeE5y2ml5f10w5/wA9F5jjuhkStTnvPRs2jXiyg8dEWkjdIOf89EOWv5QV9hXlgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABX2FeWAAEaTRx5283dWTo+qNLvsK7pa4e61ZSXGg65eij87Iq58Q5iRpMfxNetkRZceKGbZ0/Ad/xObe6JnPVOmV26PWyIq61VUWydIgSs2XN43vtTIlAV9hXlgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjejeiyg8exX2FeWCnkFgr8Fj5qt5v9xYBd642SZsr45aIYke4InIkCLr1zltUrMQS0QTPEbwWcDA3Y1CVmskEtEEnEfwTPMCQTNleLBXiwV4sK95LIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHJabTdm6I27G8xJdbMlk6vW9I3uJJWTF16s2zvKa53l89+hcNLd31BfivsK8sPHvRHF9HyPe2SeW6nmpYF3XbKm1e3XHS1WmRSq9e42Rt1ZZc9Hy3UnI79G2a2zqqdc1mv1oLyP7jrplV10XqBPQFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKLJeIcIuVVpi7cvbWWStiLetMUsHLzy5U+gv6/TuLACvn/Lz6i4u0OgU2mL9y0+rpVRy9c3ILxUQY6VDpdTpq+Fult3P2BYKfEXKjjWdKo4y9K56aWiotjXt5zwdMoY50yo3lgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADk7C0gxyXayoFlbU9Rsmudm2G/WaTdbbM2q0XuvUpNdz4l52VaQSF0dXZJZK8th8t+hRCN6uNxQQus0xyc3pddlDsvi8D1tjrOZrO5S66bpNOs0kPqtebysftVnJSujS1EfofFnPaunS8xG7DNnN33vfLysHr/dnEW18Oa9dJ7XaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABEjzSJmwGncAAAEbRYCulb4hLQJ4AAAeYJYK8WCvFgrxYK8WCvFgrxYK8WDz6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFdY15N91VkewAAAAADQQbXnuhAAAK+wr7AAAAAAAAr7CvsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABW2VVm8xMqJGs9br5vUt10fz/ALezhugranNvJXNXR0nH1VyWtjxc3Wd13SVuddvP5bqbAUABX2FeWEGcK71PwMwMFgrxYK8WCvE2F7mldvlCvsK+wAAAK+wr7AAOZmF0oheuUuixVHqLVR3moEtfYV9gAACliHaQZdlq4b0vbvm+0+huF1J37it69dG5KFH0N8vua7dznRoCgAAAAAAAAAAAAAAAAADBkwZ1bBQWkzBVSJopbrOCIliJBusGqruRA022CHqsRHksGQAAK+wrywAAAAAAABX2FfYA8HtxtwXQK+wr7AYziOO3dTiqFfDkffV4OW8dT6ipvPHvUCWvsK+wAAGjejiZ3UK4uR1g5J1o42X0/lOajdZsXkdXW7jirHpBDmCAoAAAAAAAAAAAAAAAAAAAiEqPzsgtEHQW+aj0W+aLJeeqDydE5vwdRnmcnTuajHX5r7AAAAAV9hXlgA5iUXqP6NyslElUzzejbz0jeje8+ivsK8WGmLiOK7uumWep3x+1Xu7CptgBVWvNFv7pIEdbt45Z127lOrAUCvsK+wAAAAOeixcxbQ6vYdHz9ZKWZecl7ud3Q8rk6u54/sAFAAAAAAAAAAAAAAAAAAAYzgzy3R0RZTc+iptKu1M1tlWFj68+inuKa5M0d5SF0CotKi4Oe6Pn+gM4zgyAABX2FeWAOcx6lFbif7ig82m2yPmZ7WpjXPiI0O791G6KDOSvsK+wUADXsCvsK+wCt8lpVWoq/NtiKpvn2VdpjC+gAV9hX2AAAABpbhp8SQiyhq0yxG2bRq2gAAAAAAAAAAAAAAAAAAAAxkRKuxGxJFLNm0MWUSxr7JfuviLttq+MXdTXbjo8c9sHQVU4pr+LCLvFH5L8AACvsK8sAAAAAAAAV9hX2AAABX2FfYHLapd6UOJEKNuvdGWNbVFlrPjXLgSyPWqWl76Fr7CvsAAAAAAoqE7twXk798/H0B8/uDqAAAAAAAAAAAAAAAAAAAAAMZFZJhTzeZFBf64g1NvKs5/V1Gpecg9rrKKi7z0c3su9yUPQ+Ni4Mmnnb/nTqwAAK+wgE9jIAAAAAABX2FfYAAAFfYV9gAAAAAAAV9hX2AAAAABxmi/uzhPPejgsd8Pn/j6Hzx0IAAAAAAAAAAAAAAAAAAAAGMiltKi6PRGJUL2OdvqnwdAooZ08Kq0nWa6OoO2zwvbJJxq8LIzr2Dmem5g6cAAAFXP2wyYrslg8ewAAA0xSwjR5BosAAAAr7CvsAAAAAAACvsK+wAAAAAKO8ork2NewAc90PPHQgAAAAAAAAAAAAAAAAAAAAYzg5+/gVZeZ568M+90Yr5cCQeo28aPe0bIu4arOBrLTxncat2qGWnNW1UdIAAAAACF4sBRyuYtizWAr1hiI0rkZ1dArJxtVHkuWqhjo1b5q0RIhZwp+SvWA5+PWRzs4V7XhUXxoefJsaJyaGtLZeo1VZfKn0tortpMRJYABRadsEk+4viLOPTbKuouz0nQhQAAAAAAAAAAAAAAAAAAAGM4M4zgrfc+rJXiBuNF6BnBjHoeXvB4ougGrTDwSYcizIsrODIAAAAAAOKn3e82AYyjiJt75rmJllIjmpk7bZacb2lLNVMyz26zQaelr82Raad1gLDg3VeWFdY1EUMnpoxVYucVyFzaLKWvv/WdTKq9gazzu+62Z1Uxui13Nf0NfYAKBQ31DfAADn+g586AAAAAAAAAAAAAAAAAAAAADGcGcZwAZxnABnGcAyMZwDIxnAMjGcGSOSAAAAAARN+jebAQ5nGyY6ly9hZcaeWr5e2k81izpnH+peuR6Oy4mcpBl7Pdxc+zpXJdaK+wr1sK+wrywcbXx9CcnXV3tfUaU6WRwPRLZeuarTv3I5Otcz0wOKO01/IfrZIBQ33BRz6K+dYPoz5zk+i0HM+j6GAAAAAAAAAAAAAAAAAAAABiqthiPuPTXqJWK3YTkfYbcaJBhzvs6DHiFFggarLXEP2slU2Juxo9m2Ns2lbO2QiarbIAAAAib9G82A5nHTo57fdLOXh9oXnM9ETlrC5SxajoVnLZ6hLyW3qFnMdOKr7CvLCvoaksZfQSCvh3gpo/Qjmt98KSL0o52baiqtIODz4tRAngBS0PcDhncjhncjh7m/AAAAAAAAAAAAAAAAAAAAAHOepG+KlZbq1830fiXnbeTL1mlpOw1S13VQpichNtZy87V9LHlrdFzI1mh13yWr93GTkPPVeSdIEBVbZCFN1QiyR5AAiyqobpQ1No1No1No1No1No1No1No1No1No1No1QLQUFV2mo2bq2yAAADVCJEeVIPHsCPHLB58mwB5jkoBr2AA8npq2gAAAAAAAAAAAAAAAAAADGQxkYaqQ6HFBg6BQZL/FBg6Bz46HHPZOgc/k6DFFsLkyMZAAAAEWPZDx7gfND61X4yWAAAAAAAAAAAAAK+wr7AAEIm1ubEhTQAA0cz1vOHr151S4ueauNZi6bahzb3NRmyPZ1kiWZt5u1slafO2arrWol6zJ1UsiXq5ogKAAAAAAAAAAAAAAAAMGam15o83fieV3nxakDFjWnr3L9FZuiXBCh3VITPUwV8fFsVdxzfRmTBkAAAAHjnOmHI31hXlgAAAAAAAAAAAACvsK+YbI0aSRp2wAAAAAPHtFdYlmI/E80v1p8j8H198e8n2Tf8Tuj6oAAAAAAAAAAAAAAAAAAAABjODRT2leXaMIVtVaS7rN2ksswMkO6pt5Z0nrBconghXVJYFZf8zYFvjTuMgAAAAAV9hXlgAAAAAAAAAAAACml+bAAAAAAAAAAoraqvCOkCOkCPRdLzx0IAAAAAAAAAAAAAAAAAAAABgg+o8wkAzzfSc8XHOWkOKy6Y1K+Dd6carp/qZvNfGuN+bruK6x1Gjelqq6+oDqKC/5wvKuP6iz11VpUXVBip0OYuFm+OT6M6KvnwCwa4hPAa9gR5AecmTyekWUDWbAAHnwbQAV9hX6Y53rObjV0MbAtfFXEixVEuzqOT67iM66DxVzN5sNMaqzetk0t1YC0d5Rby2VM0kvOgk89eUB0gAAAAAAAAAAAAAAAAAAAAAKexq7Y2ZwM4zgr9/OW8WymhV0qmxFx74+1sus0eleiMDOMmrmer5k6alnaxr2Dd48DXjaPenMMsuV6bkS+sOfvCJKioqOhiVtm2yrtq1l7zV3G2JFti85/bvsrbWi3lvSbday9tfAOk1RfUvqDY1ms2+YVfL0trQ3yVHmTOWDXW+0rFkKvbNqo0bLhZHq5VktZ7stZBidD6KrbYD5Pf2l8UvnbsIuizxHP7brzULbZwE6AKAAAAAAAAAAAAAAAAAAAAMFFd0F+eofr2efGfZSWEiXHP899CxXGXN0Pn87s8JysnoYpnPrUuyRH9m3mOn5o6XkOvqo5Tdc7qxAm5IkW69xTWUaz1LISq+wrywAAAAc35OmV+SegQy7QsE5W2QAAABX6turNrK+fa7xR7bjE1V1XRaZa+91e7nn9ljIIPiz3rW9FXWIABQ31DfAADn+goC/AAAAAAAAAAAAAAAAAAAAAxnBoo+kwcj0uKwsNm6mIVjvsSoxcCnxcinxdYKWH01YSfevaKGXYFfi7wZAAAAAAr7CvLAAAAHJeLnwRVxqKei7XyU0iwJX9JDmKAAA8+hW2FHPJ2QAAAAAAAA5u44nkD7K+M4Ps74xk+zU3zLpj6YAAAAAAAAAAAAAAAAAAAABjIYzgad2SlspGAZGM4BkYzgGSBFuRGkMjGcGQAAAAD5SfVq/he6LAAAAAAAAAAAAAFfNhWBWyJUckK2abQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMZwZxnABnGcAGcZwAZxnABnGcAGcZwZAAAIRNh6ZpCgdCPMGwrywAAAAAAAAAAAABX2FfYACFNFbY5rixQZwAAAAAVdIde4/B2LjR2TjLcvAAAAAAAAAAAAAAAAAAAAAACqJ9JHuyuTRDTvJC82HsrMT9pV5sohozYZIGyTELvNRbgAAgk6DrnEGdsAACjvBXrAV6wFesBXrAV6wFesBXrAV6wFesBXrAV6wFesBXrAVVqAAAGuDZCNJjRiya9gAABw8DrLs+b+fpQ+aY+mD5l7+lc8dCAAAAAAAAAAAAAAAAAAAABjOBzN/Tk+wCptaq2FbZVhY+sZKe4pbozSXdIXQKa2p7o53o6C/M4zgzAl5IE/2AAAAAABXRYuS6ezcFAAFbFkqK2zqQo546EqYtkWVYCgAAAAAQfFjgyreDPpyNJAKO8or0AAc90PPHQgAAAAAAAAAAAAAAAAAAAAYyIdfN9G1vFXJmYKxX38Rc02amS4OosqyCOk8V/mNs+hurKe5nwlm5p4Z0oAAAAAAAFLdUsUemZLrnvfQ5Sm29BEXjpN3IlLuFZysDpJdlJtsN2bz/qxkLE5zo/CQ9PRetTohKAAAAAABq4/tRx3YgBRadsIkSIGYs49BMq5g+/SdCFAAAAAAAAAAAAAAAAAAAAYyKuXAsTcZGMjlZ91mOW09eqhgdZk4t2g5vz0uYovd0swZWPz/AEXNHVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAobinvjVrkjzokjXR9Bz50AAAAAAAAAAAAAAAAAAAAAGMiktqa7PREJmIuCsiX0MxiNHi7jcj3NldL5KxltdlZts6PMfK786N45npuYOnAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQ33EDt3EDt3EDt6Cn1ndgAAAAAAAAAAAAAAAAAAAAYzg5+/jUxdeub6Ex78jXI5+eWEPXgk69Xks9UEbdkTQXuvOw87PFGdHzUjBfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5vnPo4+cPo4+cPo4+cXvVAAAAAAAAAAAAAAAAAAAAABjODOM4IUa2hkmt0TyPagZwAGcCotxHRNBtkJpnGcGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADBnGcDOBnGcDOBnGcDOBnGcDOBnGcDOBnGcGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMZDGRhkMZGGQxkYZDGRhkMZGGQxkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAf/xAA1EAACAQMCAwUGBwEBAQEBAAADBAIAAQUTFBIVNBARIDA1FiEyM0BQBiIkMTZFYCMloEFG/9oACAEBAAEFAv8A55JSPNrTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTarTaqV2BE/yw+vaYgovzSNrCMM46IWAvBLKh41nAt0uzBmPkFJYIo5aMoAYGyHwyLCBPA09BSfNRWl2asNbt1Ya3gZ+P/LD6/NelD+Wr/xbKeI1cnHWi1wjLjmL3cyc5DxqI4iR0R2NBqSmNK4FeDhIXOixK50hFZxcsgWODK4FeE9VjLxtwxe6BNlyGPDewsIck7YRg07RS4bVuBkgAkSwcBx5SWo1kYTIs8gAzWOxjE2UXvVDjiUA3SA/D5XArw0bEz03RmdFkrjXsmzo3BxZ8eo+3c5hCQFPRpn4/wDLD6/JhIxj7MZDg5ZPlxhutInCyVK0GxPAC2PJlHEwg2yCUFhtXPHHGmjq5CdSEwDJDA3DIIAIHGQx5ZYbVyE6iAnN4nJd9qEiKLEfAsJAslpweLjf1gILqzk7ZYQrHs4yuZVgUphYC7ABiM44jg8WgtdRPICPdossi1A+PtLH6uQnRhMQylhMptSCw4na+SuEomB5SwmU2tmeYFo3GrTPx/5YfX/RcMbS8q9uKKy8VV/OZ+P/ACw+v8LBrLh35RSI9KDq7lysRfIWeFlxLHxyrJMXjVDqb+d2SNm175PuUabisoR2USjc1aw/pTrDMMlYkLZSOUKROeTlYDDtg3E7K7F/2xq2NImsFBa0cgeQm2mLP2JC2UjlCkTnk5WAw1cVBclJlZpmWStkTFGXIwhj1ykNbws/H/lh9f4cqYgVMjFcYh3tLPR9fxTAV1MLfiVrCdAj6nGcTt42Iy3WlJqZR2tmgiX3WH9KdlEeV/fNKfxsv8ZZh3OjCtd+/wC2KshsYSRhCWiBUpu9z980p/Gy/wAZMS92R3BDN27rvIOLjxchyh+G/Ez8f+WH1/hlG0o2XBEcQihfThqSAGU4whDsgOA42hCMpADOekPUiIcZzHAsYCGOMIRHEghltpDtKwhxHpDuO8ISgMIg9mxUoawAy2q/GQQy20h2lYQ4j0h3HMIiRuAN7XCKRJLAlOcIEj4mfj/x+uPcGNAAtwLVqUowj2SCbcQIchOBuuBurxatYMjnFwN1wN04dhNfhavbgbrgbol2xy4G64G6/UccNwSPA3TLM1KFkLGJwN1wN1wN1wN1wN1wN1bcyrgbrgbrgbrgboMzntwN1wN1wN1wN1LcwqRDxNwN1wN1wN1wN1wN1wN1wN1wN1oHmT/Hsm0M7kn9XH65Iu7kxncnZrlBCsxNYzCr0CNsP7+YpWjkrCcIaJVG5Fnh/Suz8SMfmw7G4xvYx82p3vaFmmokxcSQQrJk0sg+zFyxTkjlDHJHKAYYbuHU0cizNegWa48bqDsHftLTyJyKGIykWk2NrjpcwgpJ0rEwWcGYjJ4QcIRpaZTCyACNv2JkWOWtkbUF/lbjnz3KwkTGSHPmLE4zndVjks7k3X/R7IJwnHIXUIeVnGtEkZByorGjkcVCQ8Z2ZPD3LLG46+Ot2MfNo3fo6LN8aCExirI8cHW2COrHERdm9yny5pQNYGPsZEsdmEAe/Iqwna67BlVCrlUUYkR8lBUIbGTZORK6xEi2My1S9pWQ4TcsnxmyasyY6BVD8syw5kx5mNAn+je6DtY+b57Ku4n5khxnL/JRJPnfNBVdoNlYZIciFfGMxMhG6F29TFHdGAgXRnqOVFMIiwMJlsa1bu5ctLJDtMr0eXByNrICfhMz3Qdl/wBjZxvVbOVjATyJA1GY+bxfMazzh9ObxLEXc1TL5AjJF2wATs+WBCNm1ztWaxSnRyYa51zAkmiNm175PuUabisoR2USjc1aw/pTrDMMlYkLZSOUKROeTlYDDtg3E7K7F72jbmBCgx5rL4PflFKTDXOiNm11GrNR/wAaa0r5TGzHyi1r2wJyrxsOZ22l796jf8eD+XOk/NnMVb/xcN6UX3Z88o8/WmdsKfv/AA/cxIqMxkPJPdB25dK/OMvCw8TmfTIevWirexmJHRGUYszCVmM7iPlXtflssiva8ZxO2KUNop0cpxHn0fU4zidvGxGW60pNTKO1s0ES+6w/pTsojyv75pT+Nl/jLMO50YVrvsxvNVRwEcNAxA/h7IxXGLVHHPRnE7eHlDX/AMboDsxLGJznccLjFjlAEJj1Sl2S9i2xysQnUAzQVQLwEAYQhCNcR1QtRGisKfLlNXgQWlYCGltRSFxMXjxt1qs1uCWohFpn4l2oTHAkdOHHJZec5jgSFwBkOA4DjCEB1EcIWguEUpADOcgBlK1rRtMIiXtCEZSAGc9IepEQ4zmOBYwEMcYQiOJBDLbSHaVhDiPSHcd4QlAYRB7NuHUsIdh2XBEd1wXqQAznpD1P8wRkY5d7RK2kZUMQxW8ZFwlrbXhWowKhGGa3+14ptXGKAY+aVeBbjLOJPHKUYR3ydb5Ot8nW+TrfJ1vk63ydb5Ot8nW+TrfJ1vk63ydb5Ot8nVr2lH/NvzuNCFo2h5+RlaCfje6Lz0fT/wDNvdHbiTqE4kj5pTQDZqEyr+N7ovPR9P8A8DkJShj0U2G0sQ2aVKOjcXWyIGVudrVG9pRzDDI8lkHL2xODMS4L5xWpNgirksmFvGgeEuBl4SpzfyhjJgXMq2JwfkO9HUlY3lxsjqzgO/8AfyJSjC28Hev1RaEuMV3ui8b3Reej6f4y51Mc1HgOx8kLAj/b8l6bj8cgdLHEvBrCnGPFYmwpYSVmkUlS6yrA7F/ESPGw0vaUsQsZe34dlAnszkzAlgWL2gXKlhPLG/lAIG51iwQGz5DvR9t7WvbZL1t52rgatX6yv1lfrK02b1tb3qKi8b9r3ReN7ou3JW3bGLLcia+QIyRfIEZIB0YBttbaJGza4WrNL4f0rtR9P8WWnKGLwooDxkl11ZJjbyYVnjHxH62WGZI7y59pi5SXdUyi02Fc2mYss7GRT5rCx014v6wjPFP+HsaJiUftZBwMPkmPoCoFY8tTsYKa64rYhC0/2ttQ3aGqERwKhWtfEoXJIcJCtiUbQIksUFsYnarqAk0wgq3cK4loeQ70f0D3ReN7ouz9qVEy2YESo5XEfKxHylgbnGJl5g5GcTt4yUO/D+ldqPp/iMKJwhBlcdFRFmZFwZLHjBjCL4qKTHs8dJieBOixMjahiZmah756ari2WTTaHlscm2vS4cmgJ5Zo+JUhIaf+Fd6P6B7ouycrQhHLA3eKLrIdj3Rdl7WvaMIjjIcJ3hCA6hCA6gOA6gIYqkAM56I9SEIjj2o+n+dKVoRhOBI1Mwhy+3kOIVb1Wt6rW7WrdL1uQVuA1rhrWFWqOtUdakK441xWrv8AMd6P6B7ouwspRFrM3xy1yaF3F7Hp7ovAd8K7Niy3W6XtVzhjOU4wiMoy28KPp/ks5Syzw81xTRycW584kSgZEB0j5SbOPUb2P4fYe0MdkC6zbWRsA6j+5L9rYYGsGFncjeKGPHe4EtOyHFbl9RUV4bIjlblwq2SW35YGuVgq6WPiDli9csWqONx8gkxwtFI+5T8p3o+wTOQZKJ0sGSHEGtUdhpujcDBgBJGakJ8ZhGqbABS4rcI2AluQwg1GVpxp7ov1lfrKvZuVtoXT/WVl4kllcenl40xYlsd4HIRvl/7pVcV/w6UA/ZxqUyvjExzLwo+n+Sf+UR/lMIXJmcQ8uoiouWeEg8v7P3jeX4UddAXBMfG6O0M9jxqXyH2sceYvfmYvGNoxL+1v2qf7R+GpdH2TtxB7O/ux0fgx99Fvynej7MV8zK+8n5TPYu3uXuCH4fdiQY3hRNl2BwXyweE91gEbwkZhswK5CP44RxGp7ovDaEbTp7ovA2nJgtk77sSWljZJcWMMjqWCqWJvCj6f5OiK5dEerYI4kmuAkqssC1RHCENqvaN1w3qY4FjAcBR+1FvwiSjw4y1rRtU/27CfKt8NS6Psl8HZP3YmPuie2lmPKd6Psjj2REXQ0z7AkDrIbU9sTeyxsaRkZkJHKNKe6HjiBtDF3GLYlISaU7MLLyBanui8b3RUxkFlSByKhydt791t6vtqvfuta9pR8CPp/wB+a9yi0rDBuA1uA1eVpB3a1bterytNaLIL21xVxWvj9cVaw71OdtHjjWrDuJLvwnFasx7k4S44eS70f0D3ReN7oqMUYs/kzgZiUrU8oVot3AvSGcUnjpjORf8ADpDHO8eztkYnKlh2JOohIZkuTja9o0j6f9+d6BTo+3NelDtbTM5eB12ImNutSV3oXSgfhYVkSeTAysFGTOjYph2dXa1TbcNSUXlHlgrWuie1sawYvkO9H9A90Xje6Kir6mbgEQ6jCfO2F7CyIRQPS5mBI3AX2enYimSvJltW4ytYlspX1xilHM9iPp/lvZKKkueHrnp658eufnrn565+ekMxFov2vI37sav03bmvSoOLacCQBmoSsxnMYwJZVp25oH2431SQjl+6/LcowE2PFbhzkf5B2knYcMfxcx8bvR/QPdF43ui89H0/y205OZLkRq5EauQmrkBq5AavZ81Qx00ch9rynuxgfkds4QJHYqVIIiQgOA4zXCSUxwJHbg07gFecRwhaC4By04amnDU7Tj1A4q8pO+N23ena9pW897pPG90Xno+n+WH1bxP9d9ry3pY/ldrG54YM5ObYy3hDWFpDKM1pnCOTbMwTkSEZEYCK8iQhGJITv4cb1vkd01KGSBY+aU8A0McyE8b3Reej6f5YfV/E/wBd9rzHpkfhqZe6XearF/MD114cS5d3R3IuMebxgBMqvwsmLG9x5o3IQRhHDhghGCEixtfVvaozjO3Ziup8ki0Jy/VDreCtUZRnbxkMMVt3aVcLJaEAYfJe6Lz0fT/LD6xEkJ1IkIX8D/W/a8z6db9jSvaNrQCPUJevyHGqtKDpFdR1lORWOXT3PLyDly2FhzU/W7Agpkx+oiS96/IGGvapw76jfijWJ+PzJKLyvte6mpGTWjupR7nK4G60T3raRvQ1giv5coxnHYqVsVK2KlPBUVSxYlWsfsVKUTWkvsVK2KlbFStipWxUrYqVsVK2KlRjaMfLD6xif3yPXbpphibpAJEadVg24YTbWpuftbqtm1ItOhsLI3PkWfl99uEHvo2QEq/zJeuZq1zNSuZqVzNOuZp1zNOuZpUo8J1qfzb93cH5Img1N1aEcPaVw+d+I2O4WEY18b2//iO/cWAdgL5cgqCcSwmO2USvIxyRyhCREMGRs1j94EUI5FWVgNBZtPJJwna9pW7fxIx3D/DbHdOkumyTTECiNEq48gqWUH1jUq2OUCHGKZcioEjTHdjl5XmtLJwjkgMRsvzFTi361zHaAtQGQsx8IfWRGjjGdTmWQZnjyHmJhnFd2JJTFu7MP9d9tcX1oLNQZhtg97DI1RJKytPt7q4bVw2rhtXDGiAgkze0Sw0LXppmywlscEcNqvb6DKYkjJcTjpo+C/7YsLc0MXHULi97txwlj8a7Fq2Iv6lL4QfxfhtJ2UbX/EMu+ORQi5fG44BF0u0iq5pY9YEF6Uv3KplZmTGTmMeJjaOGxUbRwsI3hhYXs1l1ZnPBb+OKdH//AEAvRnI2t+G8nG0Ub7i+cXXZtkvCH1nxPdd9uYRGee0boGPEInlbQga4cjKgp2GT6FrpB/K8Cq0FAbSG8njh3JFIEVeViuMaEBkqGMEMOzHYu2hvIrQi1ysVqEKAR+BHoqCKx8eIcQimpCbQFoLrAWguqNQYk1FBpCtjBRlHGigIcLDGZKBmIoCisVMZUmFYMiYSGwRdMa8/CH1nxPdf/j2ukH8rsEzAxvAUsAjIbTv4bMwu3RSwCPwI9FSXTeEjWm6GZJ2qB4TYDMk7eK97WtAoy9ofWvE71/8AghnGW/mNdIP5XZuLqkmqcaRnCGANU4GCTHI5yTawDNpLUPUfbucwhEGblQJ3KvPUbyi0Jjzciw03pyZwDVrLjUY4cl2I9FSXTY5MTECylyp6NkESxGODVt3k7rwXzcSzHjrYsQiJKgtl7FmPHPJCST07M5paFlsx2Z0za1JrMZRkABrh7HXSI5b2gYr2gZr2gZr2gZr2gYr2gZoGQK9kf8EUEDVxnXqBIFj5TXSD+V2bCZZS5gRQ6M4gHJ4zCgnFB2Ra5YYbLNWEym1szzAQBL4daFxqkEwDIQVaK6EbtktoyTCSg3du4nL5HsR6Kkumx8WrQljCcucVs2vp5GdNKlmxFNmWQjjJXTsB8s4rMCyMcZK6ZVXW4RVlHJ2WnbKXvaNtch6njxFEooNNftexoXq9nbV7OWr2ctXs5avZ2vZ2ksUJOf2lJqbEqgyAkpziOIyjLa7IIzbdGpWte7E2AivIkIQ3AdSpMukfi2yBmJISkyzYSwmxSG4zNcgiTkaLIJz3d45EZRltNgIryJCEYkhO/ZNa157iQvKa6QfyvpUeizbTadYVxxhsIBgt5c2fzWW47/d8V8zMXvtMqsEOOL3M5bagWLGHHj5f9Mee1o5nFBGdYnuxeVAIOOqJDjzOi020h6hP4dmvyOc5EWiGTBb6Qh3FA2fDCIc4hchBGEcOFCEYIdv71t5BobMZS8W5BTLALqjZBp7letyvW5Xrcr1uV63K9bletyvW5Xrcr1uV63K9bletyvW5Xrcr1uV63K9bletyvW5XpNgMU8rcDOO/D+iFWBRk8orEBX0inqEIjj94CjIMiqWOAqNjQOpAxdjC5bIRsty0e3urGTA0rBvy0OzZWg0ChrQG1VlIwYjjRRHy+21mmKdroDvRUtcNloWbstCzg0rBlJCE1PEQcCw4Tr0I8DeFEcNjpDrSHWkOtIdaQ60h1pDrSHWkOtIdaQ60h1pDrSHWkOtIdaQ60h1pDrSHWkOtIdaQ60h1pDoawRDjGMch4yEgKPEdihBgG3aRgIa3ydRlacdSGp2XlaNoMgJLshOBPDKUYR1R9/8AhirwLWoYFQnEkexHoPqv7Dw/tW4kahrRjLwkCItY9YEmSMni/Y0rZJZt9tNNmzauWhfi/wDKfiRiY8gVmcMjj5N3jDJfoImyHCZo0m7tsjVuyxPHGJPewaYE5Bptu5MnO2OXuxK32YhRijLMLd/NK5pXNY1zUdc3DXOF65wvXOVa50pXOVK5ynXOU65wlUcqnOXnTWtaTOWPLIJODdXR6D6r+w8E2bWnt5F8nG9VH+QX9ax2QCvi8SGYce03NUj7KToD96zdzxPmsc6JaCfFBQklI2kSyOVO3ukDfx+ZNJqRYP5MAUlrMwDHDfZnnbKwFj/zRlK9pFnYdle+217qjeY4xEW8dEtak4qaJa0S1MxIK6Rq0zVAl9sVcjKuMLcqPmyjacS4FElLYcqLCPQfVf2HYU8A1wHYqA4Ch5c7cUEF5KpVe9rW3IK3IK3K9bkFbkFbkFWvaVvtiNtco4at6L+1v2qfwx+Gr9H2S+X2Xv8A+ZH4Ff8AhlfoEeg+q/sJziOOoY9CBAP0OZLO7fixJpjf+1nv3ATh+g7J/t2E+Vb9ql0fZL4OwnpNv2c/5ZH6BHoPqiTJbIQWtxfRQjGeV0BVoBrQDWgKtANaAadHCD32tv3JrWlFfUnWrKuAkhb+dndedcJJr2PLu3FcBLoyctCF3pSBK09DXq7NrWkMssTuI1lZayAcisQdjCl56PQfVf2H0YfV/E/132t7oFLdynbL+QnnpLqY8LKW7NPC2xghEPZczw7amOOEYsBKFncrCO0ySCQT4jFzkXGdkgCJU8anO2KtcJKxpJzmY0ACtkx97DY1qA6M8+ai7nn7ijc0buyyI7ElkQWTvkhRvSPQfVf2FXaNu2WYKBlkRxAw4OagmYGNvBa/NRcOQJKJb37rDyEjAk6JZfmYokC7Ap55EdiAONkXaH1jxP8AXfa8lfuxoOn7WFmuYDi9OQ1nlwyxkOW2A+WcVW1zjxxoVJJsmMMqaLYVC66S018egvJVLtPO4xY63dkaxXzMz0mZvHlcvyZozABl/wC5MX/WM+tYX3JE/Njcz6ZSPQTnAcbOqXv2ccNStcPBUpRhG17StV5WjaDICS7LThKXglKMI6o+/wAH9hkj3XSsk/y85rn/AA/mbf8Al5n01m9lMmEkl8S/A0cU38NQ9LY6d31QvruLE1JfHBsGHaH1hFqbNNNTAyRgIr2va9oMBJKRRwu5OJG/teV92MF8ntv7q3ylDZAWXghOJI+Mg7FHirXs5U8SlOYUVwDHjlBTOuJmAFALWHjlBT5cpoRUBGRceqYklATXyuRiFlfNJHpHoM16TtE9us0VXC5BmaipJFtnV2jbuBdHGEaPN1ibEsZFh0OOHOxBZaF+L/yn4kYmPIFZnDIhkxzOOSnAMTZDhM0aTd22Rq3ZYnjjEnvYNMCcu0wdlRqRpUQ0RZApVDS3oalZCVjFVYGYqrA2CJtD3C1xQFjh2tZGMN6Grjx0pymnK0yqkLcytzlhjzkGwsEe9DRcq0B5X8Q6klpcWWxPxZDr5AKu0yUXKWAHIFwdjZV6NoN/a8v6WP5fgyywILHiNNZc7RQFafAA7k9SBWuJNq4cUdow5jaONtRtponhxnWTVCSWyXrZL1sl62S9bJetkvWyXqSa8YpiXbV2S9PYUrLy/wCHlh1joQghmvSR4lHhywv/ADMm6FhGZ4r50E7OZiXpDs0ZHjKd0C+gDT3Cp2JpU+yk6A/es3c8T5oDMFsmGfGYklI2kSyOVO3ukDfx+ZNJqRYP5O4VQPY6C3fX9hKUYR3IOKRRwvrD0xlGWxDiFeLhJzsS0QWYDcYX4sp2JaIBmEa12QRjaVpW7eRqyZEAQIh9ZKhLcAR4D3TPElsaLabJiVEV1HXuu+15j0yPw1xzLWlKuOYr5npcj6aXVtgjxRJjtaMDwes1JME1kXbBM0rDHzbxPytS86/7VYnv7MV8+sYtAkgTC1bXZhjbYsQiBDDINqd4WcaKA8UsiMmOw/pXaj0H1X9hkvTdqDkVrbk7vfzMYmOZJDgw5wREKNrHd2QBlBGNvwzGNjusQivlsUAcrYf3L+EPrPie677XmvTbX74m99EnYUOAvcOepENuC/kEtxynPgrvNGr2iUY78UKxPxUitNaEFW1LkSIdGwHyzuqwBlZOYqTVuHHDTeGugvJVLtR6DyGSMzysiNptFeXBMrq4YjbCwJJvvxc2wDCBwDN55BUc/J/sMl6aJEpUbpW3LSmvMKpYmkiSzMcXwCIhxQAleBx42Y1CIcUBJSsyortYqK7WPhD6z4nuv+1mDBgNlHw1GbocmaN5Q3I6FG9FbYtldV+tZ6td2tw5W5brdNVumq3bNIOkZeJfglMsIRFa8RhyVtST8uHGLEXB5qPQeQyHXzrQb46do2v+IQ+/PF92bSlLgc1r5rbuTyCUbc18iUrQjG9pPyjGcbWtG30MCjHmd2tW7WrdrVu1q3a1btamijK/9tYDZgIntOXFHuM/a901bKi8hkMuMDA2IWHCN2WrykAMQB89HoPIYx8GGIYwViWWhZw6QzkCkMFWQDZGaAyBCiMRhLQEfybg4MhFnul9Fm1C7ruvXvr31769/Zh1Czc+3EFAseUpUMIwx8oqYTS5dG9CAMEfoEeg+q/sJRjOOkUFCYgW/wDpH3sgBvGIsZC6PQfVf2HYUMDW7zr0MsCx/wBARmEJaZzUxh1jlta0bI9B9V/YeAi0ZS3Ew1399v8AOTZhGWkY1DHAUe1HoPqv7Dxba4rwZtefltviUrnsa59aufxrn8a9oI17QQpPKgcn9tmSAoyzCvfzS1c0jXNR1zUVc3BXOFq5yrXOk650lXOkq50lXOUq5yjUMqlOXkzahaWkY1QHAUfCqzAam8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FW8FQp2K745wiSPAZehHgbyn1StZLk7lcncrkzdclcrkrlcldpdI6eQ+2Ou2UGLH8d4y90izsOy3fbbXq0pjjERrx0i1qTirpGrRNUjEGrpHrTPUCX2xlitK40tyo+KbUbS0SmqEIjj9sKCBq4zL1CcCQ8YfVvE/132xK24PCGvei/tb9qn8MfhqXR9kveLsvf/wAyPwKf8Mp4JNR4tApqhCI4/cJrWvOzNxX8QfV/E/132s1+4CcP/P7J/t2E+Vb4al0fZL4OwnpNvdZv/lk+2ULEhGMYR8910aIJZgwoiJEwvG+3slce9Z8EczaWS7ce8Vtisk1NNJYlzK/Qd3fbbyDRc4XmIDjZD2h9Y8T/AFv2tv3Jq2lFfUvWperwJIWrKt7DXvGc17H924tXBO6O6tW6j3GNGCe4jV2o2tOBJYjdQrLEsVEDoCj4rfR5NDfrzYyiYsnkNRGNpAa2+6z7wrY58n638QhJF0pJMXwGLStAee9KWNy46oridjDmuWTvJLNY5e2UNiLXtLA+lC/jb7BBYuNpAa+gJCxRl/DYL0jjnMcbtD6xif3yPXXeLM2/jFO+QKKmntuw1Kcmftb3QKW7k/BL+QknYYw79pbmcr4u0HxEZKWzG5KzjLkOrhCGOd8TBxNqyeax6J7tJd1SSWnUsWne2KvMc/ocihvhzSyxxnw8JoCWyMjARKPL5FTep4tAicY45tQxsewXFrDuFXJKzcSexM2wnQnPIFxxxupY6YmR41tVnG40ic18Y4taGIPHEsYvcY8S2Rkb6YPrKZhptmLB3KTgoRg5DNYow1JhPbuzD/Xfa8lfuxoOn8DMpgzNmbOWXYMqpfHGjiLOMGmO11nRCPaxdQ2EnYimSHAjL2NhOGIxUJDxvYaemPHWvbI/fA+skEMtoDgKJFwFvaNrRisAc7wheb3Xfa8r7sYH5P0RR2KLFcW8++B9Z8T3X/a8v6WP5fgbT7449S5Vh5EZiSyQ7Ts6C6kMkORFS33sHhSWjkh8RsgMLEb8UfBjOs++B9a8TvX/AGvMemR+GrklO/AatSULtdJivS8R8taZ2wx9FOVeNjCOVvJFiximljEWhb/3tXirvLUSWvfsxXUffGX9jl/aK1e0Vq9orV7RWr2itXtFao5Hf5H7XmvTbfsb32lKIR/96hKxYDh+QQoBEIAwW5cpqxSXhcOOUASABjJBUA7QxqY5kAOTMpWHHUJGpRsSEJcUKxPxffMjirOy9n2a9n2q9n2q9n2q9n2q9n2qx+H2pftbK8Gl4QyYLQZb5oeN7wswK8A2vRn5iym5ZrdsVvDVvS1viVv5VzC9cxpB/etk/KSc4wgK3cKGVWhOWVX4cUEogf7FoG4Cu7YkuGPe07AFJKbeHkMB0zDINgVgjtdtnTpZeKwf9odULNuVBoCgFvLIjCUtmxKgKiX/APup/8QALhEAAQIEAwYFBQEAAAAAAAAAAAFBEBExUCAhYQIwQFFgkTJCcICBkKHB0fDh/9oACAEDAQE/AfdYlZFcKVEzkNPC8rtricTLAlb2uB+wmchhoJn9hM5DD9YJ4hKQUWCU3KQaDia35xpxQSk7c8HGkPMSkof7uXEpKLiUkPMSkhKzivpLs1EEaC5ZkmEG+Ba9uHcTCgmdMOl2UcTcJleHkNPcrBGNljXRLOrxW5IJTiVeCVEpZkGl0Hz6ieQ08TRe2uMchsScxGGHE8Mh+41yfBoNPoLUaVsaKj/I3USj9vxgf5glU9Hmi4w4lMNeD1wIwlLDpBBN5ygo/wDcxKoglILBKnl/tLU8xMpCZYmi/A7NRPCKOJdlhWD+wtp215cEwo5sHlFP2INvG43XoNYv9JD/xAAwEQABAgMECAUFAQAAAAAAAAAAAUEQETECIVDwIDBAUWGBkeEyQmCh0XBxgLHBkP/aAAgBAgEBPwH8rFuSZS4SCwWgt0x5C6DTHxVpaTSFv0FoLXGVpBoZ/Y3UtXTHErBbvf8ApaumON6wXwi1zvggnwMWq6CwdBILBxhugvA7Gfcz+sbaY8oqLWWHNKDDzGkLWcO2oQYWs4tIWsxpC1mLSUU+ktqgrivBL0kTumWh+YjJ99kSLTFu0VFuqU0OMFxRBha6hbycai4k5O6eXHlqUGnwLTlpzhxXB0YYeYmJrtKNlzcLQWp2M+2CKPP0Hu9RNMeWk8WwtaQYcVx+owugu4tXzHGF8UzsPiTT0OI8htQmMtIeZwwjdBha53RRhuQ4nx6hSo3X+jrDuNygtFH6ifRx4OMLUWmeItYpWFDsZ99h4HyMPzQVxa88BacFF1iPBBKJlkFuRVFrBM9RBfCebPHYG2ppC3zFv0nixv2C1QXxZ4iDci1ePPLiYohuEuEG/At5Ya049te/UQYtnmEG5C3+x5tY8W2ppeg0i3T/ACQ//8QAUBAAAgECAwIFEAgDBwIGAwEAAQIDABEEEiETMSIyQVFxEBQgIzAzNFJhcnOBkZKTsQVAQlChwdHhYGLSJENTY3SCosLwFURUg7LioKPxZP/aAAgBAQAGPwL/APHkeOORUVVU6pfff9K8IT4X714Qnwv3rwhPhfvXhCfC/evCE+F+9eEJ8L968IT4X714Qnwv3rwhPhfvXhCfC/evCE+F+9eEJ8L968IT4X714Qnwv3rwhPhfvXhCfC/evCE+F+9eEJ8L968IT4X714Qnwv3rwhPhfvXhCfC/evCE+F+9eEJ8L968IT4X714Qnwv3rwhPhfvXhCfC/evCE+F+9eEJ8L968IT4X714Qnwv3rwhPhfvXhCfC/evCE+F+9eEJ8L968IT4X714Qnwv3rwhPhfvXhCfC/evCE+F+9eEJ8L968IT4X714Qnwv3rwhPhfvUWaVGVnykZLch8v8Lz+Yn/AFU0zglV5qzPhMWq+MY9KEkTBlPKOouc2zHKOnsCsUc0+XeYkuKOzJzLxlYWIp2QEZWKa9xeRtyi5tQcYPF5DrfZ0JYmup7JEY8J+KOfsY0McjtJuEYvQE0U8F+WVLDq7G/Dtmt5Ow2N+HbNbydjhvS/kf4Xn8xP+qpvV86Xor6RjjYIgswJ3KbUZosdipJl1vY5D+FqwL5nXNIosrVHFJjZVQLxEuXbpNTwbSSSNQGUyjhVOy78tQqm7KKM2QbQi2asQyHKzYllDc1CXD/SMksinVHa4akD4x40K3EcV8x9lYmASyPGq5lMnGFLLJip89jlyv8A93qKfNaV+Dm5vLQlw/0jJLIp1R2uGowrPIkRhDHKaAuTbnrEejb5VEI8AXATRtoNaxOzkO1GYvyFWoyBjn2N819d1YTayzR4Yx3eSPfm8pp3TG7aC32zcr66cQSxySBbgBr1aT6QnhxnKrmwB6KwQaWS7Br5WtycnNT4YTSRxQoL5DYsempMKZXkRos6FzqKSWTFThyDls//AHekeTj7jX0f0t8qdHF1I1qJw1nLbMMeTWhLh/pGSWRTqjtcNV9pLrDn0fy/Kp1xGMeBIzlVUNr+WsZll24hsY3PLeklTGSGfQnO3APqrWSUdqzaP5d3RWIvPLHFE2RVja1fSGGaVmMKZkflpJ5JpHd0GhOg6mG9L+R/hefzE/6qkiiXM5tYeugq4AKbWu0otWIjMgbETcJm8tHD9brDwfHBv0VhiIbSwurGPMNbeWnxQwufaoAVzi6U08kYZZVscrcSmjfisLGtiIFxMa8Rg+U2pp8S2W4ssSnQVNGeBJtzJHelXrZIj9p2e49lSYiOHbLIoHGsVqSZ4wwmSxytxKSGRbOAdKigbgTocwvz3pV62SI/adnuPZTT5e1mLLfy3qSAoMgQMGqZFF2ZCBUcP/h98i2vtlrF7UqJcTyDctHC9bBWyZc2ca9FQ5IlkQRgMl7EGnxEkCQoyZNne+bppjh4oo5LWDBKMEuBQsRbaZxbprAyRLtjAMrDNa+lHFwxCTaIA8eaxBqXF4hBH2vIiXvUaxYcSgg5Wz2t00kRN2Gp6aws0MO12V7jMBRiGHXDhtGdpM2nqpMPCbGOxQnnFKvWyRH7Ts9x7KXExxbRDHkPCtbWpnhhE0UxzWzWKmpo8SEjz8VRrl6aWAQrGw0M2cEeylxEcW1Ux5DwrW1qZ4YdtFMc1s1iprGyuo2862CA7qiRtGVAD1MN6X8j/C8/mJ/1fUy1hc7z3MjnpYUJKrz93w3pfyP8Lz+Yn/V2TSFWa3Io1NJ1zhDFG5y5s97UcKkBd8mYa0+Hli2cqC9s1wRT7DCmSJDYvmtfoqZhuMzGtpNFmbnuazyw5mzkbzUuGhw2doyPt20pooMK0mXexbKKkm2BzRNlkQndRntm5hz0sEcBknK5mXNYL66mhkiMUyrfLe+lQdH51ho4o7qb6Z7ZtKkGx7aIbl834V10mEJjA4XD+VdcrhmOH8bNr7KjSNDLLJxVFDDzwmGQi68K4PUDYnZbS5vmktUkuGyaDhFWvW3XAsYd984zW6KwqxR3VrkDPlzactSDY9tENy+b8K66TCExgcLh/KuuVwzHD+Nm19lRiKFpXk3AaD211vPBspMuYcK4IrEq8fa1tftnEozQ4Nnh8bPYn1UMYi50NtN1Fnh2a/Zud/ZYb0v5H+F5/MT/AKuyBjbJmcKX8UVHs8RJK2dSby5gB5acg3HW4+dP/p/zp4ppFR43bMGNSm1rzN1D6Rq+kPOX5ViuusU8QjayoJMmnPWPgubO25zra1YXBv8A+XJMnq3VLtcRJAJEGRla16ldMVLPKsdiWNxaoOj86wLOQq8PU9FTkf8ApqPon/Ov/ZFYOSSZ4Y2hy51NrGov7ZNNKlyBmDAfh1F24w20uePa9SbHY2tdlitqPVRnwWPKAC4iZrjotX0ZNLaO6te/JpU5H/pqPon/ADr/ANkVhcO8zQwmLNdWy5jzXqLZysyZCMzvfXyV9JxZgHkUBQTv0pM8iqY1syk60MwtmcG3+7s8N6X8j/C8/mJ/1dllYAg8hooIYwh3rl0q6xopta4HJW0yrntbNbWs7RIX8YrrRyKFubmw6lkRVHMBamZVAZt5A31neJGYcpXWtpkXP41taZ1RQzbyBqayyIrjmYXrKiKq8wFBUUKo5AKtJGrj+YXrNkXNa17clbMIoTxbaVs8i7PdltpWRlBXmIrtcaJ5ot1PBYPhis0cMaHnVbVn2EWbnyC9WkjVx/ML1myLmta9uStmEUJ4ttK2eRdnuy20oK8aMo3Ai9KDEhC8Xg7qEhjQuNzW1rO0MZfxiutZXUMvMR2eG9L+R/hDYZu2Zc1rclGWQ2Rd5qOPNwpBdRbf1CzMFUcp6rSxSouZQCGS+71+WpI0xMJaPjDYnT/lXf4fgn+qu/w/BP8AVVzPD8E/1UJY8TCUbcdif6q7/D8E/wBVd/h+Cf6qMzzQkXAtsj/VV+uIfhH+qu/w/BP9Vd/h+Cf6qiG2hOdsvejzE+N5K7/D8E/1V3+H4J/qrJ11Bm322X/2rMmKgZecRf8A2rv8PwT/AFUu2xcS5t3aGP50ETHQZjuBgYfnXf4fgn+qu/w/BP8AVXf4fgn+qu/w/BP9Vd/h+Cf6q7/D8E/1UcuJgNtDaLd/yrv8PwT/AFV3+H4J/qrv8PwT/VXf4fgn+qmMeJhIU5T2k7/erv8AD8E/1V3+H4J/qrv8PwT/AFV3+H4J/qrhYmAX01i/+1JCcTDtH4o2J/qrv8PwT/VXf4fgn+qu/wAPwT/VXf4fgn+qu/w/BP8AVXf4fgn+qu/w/BP9Vd/h+Cf6qjMk0ZCNmssdvz/hBH2cknaN0a3O+pU61xSX5XjsKwUIbgPGcw9VTRddrhshsq5RdvLrTbaRcwOuQccXqHBRzXkYZmlZRoOiooJ5dsk18rZbEGsTCs2SONhrlB9VfSDOcyw2yClmEyyMbEw5QB7aUdcxYaK3Ga1yfXWJgaZJwi3WReWoOj8+rFhx55qPxk4B6uF9L/0t1CVXM1tBz1jcT1qPEPbeLb51GkkeSw5738vUwL5WaxbRRc1FCYZYeGDtJkygVhoQ3a3ViRWGhDdrdWJFPbGpDIGIEOQUu2y7Tly7qhVHEYkazSkXy14Uk8LDjWF1PqrFzSTllSR8y5Rr5a65GIWPNqseQEVg5YbK8kmRhyVC0k+1id8jAoBbqYya18sz6V111ypYLnMWz06Kw0WGIjaVNozEXyimSZhNHa6yWsb81Oz/AEjh45RftIsR0VgJhJk2ki6AcvPWEgMuZWRs2g1p5o8QIY8xCAIDepX0E8MuRrcutLiTOGGYZo8mn8LLJkbJsLZrab6mVFLMRuA8tYFsjZVjNzbdpTpi/o95LHgMiZrj8qnj2b6vmjjOpC3qHHph5coXZuhXheyoJdjJHFDc3kFiTWOZlIVmWxI36V9Jx5Su0K5CRvpIkwcgxGgJdeAPXTzTYd5lZAEKJmy1M74Z1WaOy5Re3TUKupVgNxHl6s+MOI5L5cnN66kG32ityZbW6uF9L/0t1HyvszbjWvao/wC0m2Kk1TIOU0Fkl2jeNlt1MHMIpJFQtfZremw8WDxGZ9LyJlArBTZHlWJSj5Bc1hpthIsQVhdhRXF/Rkhl50S//KoUxyl3T+Y6VHHFhdrh/tKNSP1qOXC4aTDxgHa5hlDeqsZhJIpBtXYh8vBsfLQw74SZpUGUZVup9dYBLXl2+a3lqCJcPMirIHdpFtu6mMgKlWeViuYWo4cYObblcmq8H21hZkRpRHHs3Cb6lCQtFFsyFMgsxautUwTrPlsWZNOm9YT+zy5sPKCy5dfVWDmEUgTI17ru6afDvh5nAYlGjW9xU7NGdrNNnyDW2tFUUs2ZdAPLUKbMnaNlvzfxJiPRnsML6X/pb6hA2fLsnz7t/dUZhcobj+E5EznJsQct9N9FkineNd8ipwa65zjZWvmpEeOaLPxTItgaMKxyyuvGEa3tUs8KuStwRbVT5aWWfriPi3ZLAno8lLHleSQ65Ixc04s6OnGRxY1tY4Z3TlyrxaWRDdWFxSBgzO/FRBcmsMi7VOC2aNtKdY4ppchsxjS4FNioQzi2lhuqOadZATYcXjnyUsTRyxO3F2i2vWI9GerpQDxRBon5jv3UJpgqlmB4PNeleTCMsDG2fNr7Kddl2zZA7TNyc1qZ8PgzJEDbNnAv6qwrQxsBJIN7ZT0UsCYfPiMuZlz6L66aCWIxTKL5b3uKKx4bRXKu2fdU8wiKKspFgb5jUYxGEaJZDZWzZtfLTRQYVpMu9i2UVi+AUdAVZTyGoPRj5Vsljugj3bTkvvqXDxYbO0Z8e2lNFBhWky72LZRUk2wOaJssiE7qM9s3MOelgjgMk5XMy5rBfXU0MkRimVb5b30qDo/OsNHFHdTfTPbNpUg2PbRDcvm/CuukwhMYHC4fyrrlcMxw/jZtfZUaRoZZZOKooYeeEwyEXXhXBok7hTSrhG63seHm16bVFIVZrDco1OtJ1zhDFG5y5s97Vsljugj3bTkvvpooMK0mXexbKKbgFHRsrKeQ/wAHYoLxutdKiNxlCcKsOzcQT5j5t6j22U5mGTS+tYnLPsEibLZVFz7a+leHn38Ln0qDojrE5t7Rrl6KbL9nD8Oo/NNQev51Bm3GIhemsKBxgjXp8ScVsI8x4KKNOmsT/vr6OhiKq0oHDIvl0rAq+JaVs+4gaeysR6M9gFT+/tasi8VSoHtpvOX51J6AfOnmwmOOGNzdSdL+aawE81l7eLn86mZ3ULMgyNfQ2raRHMkcWVmG69Yj07VI4FxHjM7dFRBH2rSGwCa1iuusU8QjayoJMmnPX0ooJ5wHOtrVB6MfKuGwW8Gl+mvpDzl+VYrrrFPEI2sqCTJpz1j4Lmztuc62tWFwb/8AlyTJ6t1S7XESQCRBkZWtepXTFSzyrHYljcWqDo/OsCzkKvD1PRU5H/pqPon/ADr/ANkVg5JJnhjaHLnU2sai/tk00qXIGYMB+FSqu8oQKUF1zKmXJy3rDmNsmZspfxReo9niJJWzqTeXMAPLQYuoVsPob79axXXWKeIRtZUEmTTnrGKCePcBzrb+DjPl7YRlv5KLGEXOp1NvZWzKjJa2XkraRwgMNxve1GR4gWO/XfTSbIZmGU+UUYRFwCb2zGhtY81tx3GisUYUNv8ALQhjWyDkoRRLlQbhQWZAwG6kdIrMl7G9bTYjNe/k9lSXMaGXjKW3+qtkmFldb30Vvma2Y+jny3zcJwNem96y9apl3WaT9q8Hi+L+1a4YeqSuFhZvVlP51FLJnRor2zxkVa8cq82hrK6hl5iKz5Fz2tmtrWdoI2bnKisjorLzEUIzEhQblK6VlRFUcwFqORQtzc2FEKiqDqbCs0cSKedVtWd4kZhyldaLNEhYixJXfQAFgKBeNGI3Zhe1MyqAzbyBvrO8SMw5SutbTIufxra0zqihm3kDU1lkRXHMwvWVEVV5gKCooVRyAVaSNXH8wvWbIua1r25K2YRQni20rZ5F2e7LbSsjKCvMRXa40TzRbqbTYx5/Gy61sxGuTxbaUUEMYQ71y6Ut4Yzl4vB3VneJGYcpXWtpkXP41tf4Zy3zP4i6mtAkI/m4TV215JfObT2CrRxqnmi3cLvEjHntXaZ5E8hOYfjXbIs48aL9KvG17b/J/GxEbZIRoXG9uj9atGtvz7tm1Vxudd4rYz2zHiuNzfv3AsxAUbya8Kg+IK8Kg+IK8Kg+IK8Kg+IK8Kg+IK8Kg+IK8Kg+IK8Kg+IK8Kg+IK8Kg+IK8Kg+IK8Kg+IK8Kg+IK8Kg+IK8Kg+IKDKQQdxH8OTMN+WlCcW2lvqDPyqQV6b9wl6PqGG9Evy/hyToq1i2H5Lb0/agyMGU8o7tdzv3DlNPLMMoUcCPm8p7hL0fUMN6Jfl/AU7KSGCGxFLOfpHEKTf7RrEpM+1WHc9GaMMFBtwqfEDMkab89X2c4j/AMTJwaDA3Bq0M0ihUDZQ2lCWIkPNYLby1iDPMzZG3u17USFmKD7YTSuuc42Vr3p1RZFuRbOts2tYGBg+aVFtaoYnDlpTYWqDzP1rY2kkk8WNb2rPEd2hB3juMnR1C8ZMTnlTl6RXDjEo549D7DVmbZnmkGX59xuzADy12oNN6Mae3dX2YF8nCb9PnWYXLne7G5qXo7hL0fUMN6Jfl3AqNpJblQUTC2o3g7x3J9k2bI2U9P3fiPMNJJPJaQ3vw7VisHC20w4QlTU2dwMpN/ZWIWdssZc3PNurPFi4cRhRuVxUUmXLmW9uahG25oSPwNYbBPuwzMWr6RCb89WLL3sgjy0u+21v6qiCspvlyivoh20XKuvsrAqrAlWF7dNQeZ+tYtVxXW7knUoDcViHXGCdm49ktr3GTo7CxFxXBTIf8s5flXAxUo6bH8q0njPnR/vX9wfaK4sHtNb4B6ia1xCjzY/3rh4iZv8Adl+VX2SludtT2EvR3CXo7CHAg6Hhv0UEfvkR2beqiseG0Vyrtn3UVjw2iuVds+6rph8sbYgoxz7jz1HZM7yOFVb2pooMK0mXexbKKl4BR0urKeQ1B0fn2GG9Evy7Ocrvtaoio1fUmpsYsdnykm1NiWxskWvAVNBWLzsdrCDwxQxnXkgyblvv15aj+kOumU6cBd1fRzRSFTKN19OSkw64tpNsN78ldaPiHmR1vwqxcbSOUA0UnQVjMPt5VTJplbduqfFmWS0d+BfQ6U8030jLHP8AYjUHLW3DlJb2JU25aTFTYlmzx6R8g+7GjcXVtCK8H/5t+tZYYwgrbbBc++mijjsjbwdazdbi/SasKGJydtAtmvTzIlpH4xphEmXMbnWs/Wy3rZlBktbLTKMOLNv1NLC8QMacUc1R2gA2Zuup30MSU7aosGvV5oQx591ZIUCL5O4ydH1GXo7hL0dhNjosQIhIcq3jzcEVlml2gxI42XLwhWI9O1Yj07VjIuUyvbpqGQ7oItfPNYrrrFPEI2sqCTJpz1jlBPGuA51taoOj8+ww3ol+XZvE/FYWowwJHPF9m53VNNjZNZVy7NToKfDwxJKl7q+a1qxEXHnlBvajhdn27xbjnpMMsfbhbg3FfRpWPvIGfUabqws6JeNBwjeo8SE7SFtmvT4rDRrKkg1Ba1qmnnUZXTjA8ulTYWWJdhJftmanw8MUci34MmbdWyNpJza9tKhRxZlQA/wNJ0fUZejql23AXNYmQzNkCgRjKaQ52dhxi19/Vl6OrYi4oKihVHIKUsitl1Fxuo5FC3NzYUcihbm5sKORQtzfQUdmirfU5Ra9Z3iRmHKV1rabNc50zW1oKihVHIB2GG9Evy7uWYgAbyazIwZecG/UVXkRWbcCd/3h2yRF6TXhEXvV4RF71eERe+K7/F74rv0fvCu+p71d9T3q74ntrjr7a46+2uOvtrjD21vHdZOj6jL0dVmRM7Dct7XqU9baYqTj7Tn8lLtItkRplzXowNMokHIdOpL0djFC7Jw95LWy0Vzw7PJe1+F//KXt8XC3cMa0EaVA5+yW1rM7BRzmrxyK4/lN+yw3ol+XchhjCWutwQfwtTxPhZFnG6PfepY3iMMke8E05w2DkmjTe97U2JBIVeMDyVMetJFhZSBJeopsmfW1r25aGL2d7gHLfnr6LltbPY29lLh4ommnbXKDanhkiMM6b0P3YZZWsorM7HDYfkVeMatsRI3L9qpD1pHwBuKCr9bYIeTZ14Lgz/tp9rg4QU35Regf/D8Pr/P+1eAQfE/ankbCKCt7jorwCL4leAJ8SpJXwnE0IvWv0f8A/srwD/nRk62ta97ms+Hw0kUlrqysP1qOXlI16e5ydHVnEPWwWOQpwwaXD4yJUd+I6HgtXbZUTzmtW0zrk8a+lZ1Kg8q5t1ZUmjZuYNUEHByOrFifJR2ciPbxWvWWSaNTzM1qzXFuerRzRuf5WvXbJETzjasykEc46kvRX9x+Nf3H40QdhY9NRJkgyxG6DhaV/cfjUgYAvpxOihs2aFP8w/lUglZWe29RbscFdQb576eSp/8ATUzFAWMbG5rPlGfZhs3LesImx24EWfJcC59dRTJgtgtiJOGuvs7LDeiX5dyg8z9afzPyr6RRd7RED8KeKd9nIjG6msa4U2kN1HRWxzdtyFcnLS25Df8AGkiRsz5VuByWr6G6F/Ks08skMci6SIbclM8M+ImkUau5uPb92PI+sEDZUXnbnrQlYhyj7X7VZRYVivN/Kh1MV0flQ6OpifObqzDnmHzHVmPkc/Oh0Vi8LyBs69B7nJ0dXG/6g1gkHH24IqcwYNZmHBd5G06BWNjZFCiTiDUCk2qFs5y2XQtrUD9ZwwZZFsUbX5VgkfVbNpz1gmiUJnzK2UWuKmfD4FJEZjeSV+N+FbNCLrLopOhsd1QjE4E4aTNwHXdfpFYuQ4Prgh8gJYcEeusRmg2MLEFFzA2PL1Jejsi4UZjvNupL0djFLHNspIr2OW9NiDJctFs7W/GutNpfglc1ueus9p9jLmtULJIY5ohZXAraz4lpSBYADKOyw3ol+XchKY02g+1bWtrs02njW1oyCNA53tbU1meGNm5yvUa0EfC38Ea1kRFVPFA0oqIIsrbxkGtJeGPgcXg8XorLIiuOZhessaKg5lFvutzzCsPGN8mpP4mgBoB1MX/3ydXFf98lDqT+e3z6snpx8x1Z/Mf86FYeT/EUxn59zk6OrK0ONyCRy9tletvNK0824M3J0CpXgxRjWU3Zcl9akZJTs5N6EcvTWwOJOQHNHweIatPiizjiEJYL6qglbEEPEDqF5aGIxE+2dRZODlAoxx4plgJvky6+2mjTEsqZ88dhxT+dRnE4raqjZgoTLrTTYacws/HGXMDTZ5nldjck/p1JejuEvR1BHNJlYi9spNZI5hm5iCOwuaGI2najuax6lzQZSCDuI7HDeiX5ff8AMf5D8qwhchV2dteeu/R+9Xfo/erFyKbrff6hXhEXvivCIvfFYl0IZTexHLpQ7dH71d8T3qlcHg5yb+TNXfU96u+L7az3GXbjX11xh7a46+2pGHKhreKWZeNE4YUrDcRfuUnR9Rl6O4S9HURpHVBsN7G3LUMWHdJJ9oMuQ3tRwsUuRdnmvlvautFxCRbNQXkYC5NSwzSrMFj2iyLRxW3XhKSIcmlumoXibK17fjTYWCQRCNbu+W5rFJLJxVusqgcMdFRPn2juFEYI3Xrrh8QJlUjOmQD2UcPDLkQxB75b2oAm55+phvRL8vv/ABHo2+VQ+YOwm9XzpdOShh4YdrLa5F7ACnglw+ymUXynW4p+tsDtkQ2LXA9lJNHE75+CEAqOHEYJYjJxCCGFYhGwyZBlBGbi1PJsciCUjLfNmNK+J+jxHETbNcG3TXWq4NJGyZhup8NLDspFF7XuCK7zH7tFTClj/LVo5Z4/NkrteOmv/NY1NDiLGWJ7XHL3CTo+oy9HcJejqKzxZotjvK3F712uNF80Wp5MpybG2a2m+mxEmF64ikUA2TMVPRUwTArh0KZQ5QKx9VdaHCTbZVyXtwem9RR7J9oCODl141PiBC8sUqgHILkEVirw7NGW0Stxj01EiQyJNBlNnFrkV1tHhpkL2zNItgtM2VsmwC5rab+rhvRL8u6ZAuZ/lXe4673H+Nd7i/Gu9xfjXeo/xrvUdbJ0yOd2uh+7MR6M1F5o7Cb1fOl/tEW7xxUxkYBZowUY7jReI5kjhysw3Xp4ZpFSSNzmDG1YTKzwQzNwn3GsHs5ncCThM0mYCsaCwBbJbXfpUj2uI8ZnbooxxSK7y2CBTeiObDj50/oB8+wzGsfmtfMN3cJOj6jL0dwl6PqGG9Evy7pKFYLlUb676ld9Su/JXfkrvyV35KwpZ1bM/J92Yjzaj80dhldQynkIrwWD4YoI8aMo5CKyoqqOYC1ZniRjzst6yuisvMRWz2MeTxculBzEmcbmy6iiERVB1NhWZIY1bnC1tMoz2tmtrW0yjPa2a2vYFQbHeD5axxYWbPu7hLbxb0CNQfqDjlayjuEvR9Qw3ol+XdMT5i9ngfPP3ZN6vnS9HYDrbZZuXaXqTDDrTMgBJs1AYqSES6ngn9a2m0TZ+NfSrxyK4/lN6yySop5ma1YYJlIlkym9KrOoZtwJ31aSVEP8zWrMzqF5yaIR1Yrvsd3ZfSB/ze48BS8HijenR5KzRsGHk7sMx4R3KN5oTT6W4ieL+/cJej6hhvRL8u6YnzF7PA+efuyX/b8xQ6mVVLtzCuKnvVkdSjeXlrFejWsEji62a456w8C4bayC7Kl7KBSXhjhzRG4jN70800au8jtmLCsCseeQJNoN5qXETeFA5Sp/u/JUkp+j+uGkc3csvs1qaOVDGNqNmM17C9ZY0C9HLVt55hWsT29VaHq48/53cs4uknjpof3rcsw8nBb9K7bmi9ILfjuq6sGHk7heSRU842rtMcknQLD2muG6xLzJqfbRyLqd7HUn19xl6PqGG9Evy7pifMWjkdWsbGx3UoZ1BbcCd/Y4H0n3Y3nL8+pZeMxsK5gOWr7Lg9OteQ1PM8l2IC2t+NQ4jPbZgi1t96TERTbKVRlvlvcVHiOuTthxmK8YflT9bYowo5uVyX9lYZEewhfPqL5qXExvka1nFuOKc4XFGJXNypTNr5K632zElsxdtaCKbE8vNXMK4SOo5yKzro4/GgepjPTnut9kubnGhrgTzr/vv86eY4m4XxkFBlmgIOo7Uf6q48HuH9a7/COiI/1Vri2/2qK4ckz9Mh/KrpEinnt3QqwBU7wa8Gi92vBovdrwaL3all63iuBpweWonMERbitweWvBovdq5gjJzN9nymvBovdrwaL3a8Gi92vBovdrwaL3a8Gi92vBovdrwaL3aCqLAaADumK8xaxn+oavo/0hqaPDCFREcp2l7mjLPDaW+UIDxjQmxKQmK/CyXutQQwojbUHfX0ftcufPrl3fdjw3y33GgkmBZ7faRt9RwvA8WhPC5TQPIrAmr30qRxxWa4oxSZuEo3C9f3vwmrjP8Jv0rjt8Nv0rvh9w137/AImu/D2Gu/rXhCVLstVjA156jv5aN91L0U6GRQUcggmixmSw8tTSsthLKWHR3eLDj7RzGkB40fA7ETdflbk6bJa60xDrLmXMrhbUUeXhDeACbVtFcFN+asonGul7G3trDQhu1urZhRd+KPJUkm02TqCS2QnL+tRCSbV0zA2tmprS8XeCCDR2T5su/S1qKNMLjQ6Gwq4Nwewiw45eEalw55eGOp/ub/5GhFhDZkQyPpfSlmHFZb0AktyRm3Ggsc12ZbjQ1ChxG1kkBIbJlzVGjtZpDZRbfRR5uEN9gTapZ4HHEurConbeUBNdbfZy6nKeNeppXxG0VGN2yWy+SlG24242NvbQi2vCJsNND66G1kC33DlomFw1t/k7LE+YtYlMSGWOR86SWuKw7QhthDdjIRa5p+ulaCZTYPqCfLpRzCSURzZkzcZkpVjilldv7sM96wI/lesD55+7g6d+jOZDWmjDjKd4NcT1clZnPQvKabFTj+0S/wDEc3Y7q3VuFcUV13GtkOkoHzrnB5a4bsw5jV97nRFHKazSxI8zauzC+taQRe4PqEmKM4AVdFy81MTMHWQDS3Ygw4wRrc2XZXqWad2bFpwGB+z0U7RLhzmkOYuTe9YpsQI3XMSEQ6a8lNtDh0jyjgKp0r6O9EflR6KbzG+dfRV/8I/KlNv7i/419IZONsAfXao1jTCmJl+0Tr00kUjKxHKp7DNLDG7c7LUUqwoHy8YDXqXO7M//AMjU+KXBGUTHgnOBwRWIwkiZGj4SqTfgmktygk0tuUMTWDxS8aBs3qvrRk3x4dLDpNSS4ZcPDCzHjKSW8tYn/fUHox8qP+n/ADr6Q8+SgAPsJ+VYewtlkS1T7IRFljFtoTu8lHES7AXTKRGTr2WJ8xezwPnn7v2nCjlH20NjVv8AxB7eYK2rFpZfHkN+5nrWXIPEYXX9qtnw6+UAmtrI7SzeM3J0fUpvMPypejsREhYqPGrroFle2UgbmpnjlmhL8bZta9HDZe1tv8tZJJJpVtYB24tQvtJGMIIXMepLCJJdnILZc3F6Kgku14VyrXXNznyZLclSYi5zOACOSiElnjQ70R9KWOMWVdw7GHzeo0RYgMXF1840sacVRYUMRdg+XJpyihAhOUaa0MOpbKBbXfXWupjtbWtnGWNzclt9G0kwjY3MQbg1NEryCOXet9B0UqDcotSz55EkUWuhtcVNBmfLKST6661YtksBcb9KWNy1lIbTyUsmZ45F0DxmxpnzO8jb3c3PZYnzF7PA+ef4Qm8w/Kl6OrNEoN4jY37EySGyjeaj4DtnNuCN3T2Rw1jnC578nUMkhso3nsYfN6n+5v8A5HsocPkvtATmvutTbSLZm9hwr3HP1JIRfNHa/rptpFszew4V7jn7O5o7N1a2+x6uJ8xezwPnn+AyqnhLvU6Hus3mH5UvR1fpWYb1K2o4gYyfbhc/G4PsrBJG2zbE72HIOWlKYh3i+2srXPqqXaY+csDosANl9lGSR2zI+Xmza8tYFEllsZhe776xF55Y4omyKsbWr6QwzSsxhTMj8tddddTbYR59G09lRyHeyg1JBtpI4oVB7WbEk1MrSF7Q6M3NepH/APEMS8wvrEDkpJ3Zg1hex361DG2NkjTl1JdqEEc00kTpftwNwfX1YfN6n+5v/kaxBmGcbZgAdwrFQ5idjPlUnmvXaMweZwrONWNB8FhMYk6nfs24XTUGGkvstntGXnrCrHcIVay33VKqNlMmLKXHJUcmHZomU8LW+YeWsYdmO1lcvk0qVY2ymTFlLjko4jDApLHY5r7+miHvkOHBK89SwRcGIxB8vJfqo8MxWJtCBz1laRyo4zsb2pYoxZV6srIqnMo41d6i/Gu9RfjXeovxrvcX413qL8a71F+NYUOqjK32f4DGYajcw0Irtg20fjqOEOkfpWZGDDnHc5vMPypejq/SCuMqzWyGutTh1DFchlz6Vhet7GTDbr/apS8Yw8S7xmDFqbDrAp4RIlz6eysRhCmubMj5uNrWDYwZCkt2GYGwqZ4YdtFMc1s1iprGyuo2862CA7qMAXtmyy28tqiRhZlQA02JgiEqyLZlzWIrESyqEEsOQWN8tDB7BY7Ll2ufT2UcKYssi7uFxtahxnWuoQoY8408tQ4sxAixUoG4o6sPm9T/AHN/8jWIbDtFYzNwZL08OdTNJJtGY7q2WbKd6tzGlV5YUUb2QG5qLE4dlEqC1n3EVDipnj4IIKryVLC7gM0pkVl5Kj280aohudle7VLMhjMUtswO8WqWF3AZpTIrLyUIcS8Iivwtne7U2I4OTZZLctNibrkMWS3LVybAV/Z14P8Aitu9XPTrJd2cWLtvoRR+s8/YBmJVx9oV4V/w/evCv+H714V/w/evCv8Ah+9eFf8AD968K/4fvW0zF5Oc8n3ViA4XtcpQW6mVJo2bmDVmdgo5yavG6uOdTesjTRhuYsL1HmK3dgLFrac9RBJITG4J38I9FWkmjQ8zNas7OoXnJrZ7VM/i5tepPh8P1uFjt3wHlqOHFpFaXRXivvplVlJXeAd1TvGyM8Q3c3TUWeWMSOoOXNWGVQO2SZDeplZ4iqnQKdR01kWaNm5gwp4GyCJYs+Y1eORXH8pvVpJUQ/zNaszOoXnJpgjqxXfY7urtI2McnjLy9PPVsSuX/MHFP6dym8w/Kl6Pq0Pm1FJBJlQ6HgjfWzMvalBZhlFMI1sGOY9PdDHCu1cb7bh0ms2IbaHkX7I9X3xjf9QaRL2Ekiq3RRkijVHisUKi1taw0cougiz5TuvUmJXtfA4QXdTtF9Hx7EgnPI/CPl3V9Fs+p2ijWsGALDI9PPMivJI5zFhesZCDwI8RZfJrQaNArIy2I6epjNhh9rot+HltpUMmIjWGOI5gobMSa+kPPX5V9M/98ld7XNsc2e2t7V9FM28yLX0rEjZWYgX9VImN+j9kFI7bHu/ajnGYCAGx6amWNQqtCGIHPepJT9H9cNI5u5ZfZrU0cqGMbUbMZr2F6yxoF6OXsb4Zso/w24v7Vs3Bjl8VuXo5+z7/AB+8KmAmjvkP2qXt0e7xhXf4/eFd/j94V3+P3hXf4/eFd/j94V3+P3hXf4/eFd/j94V3+P3hXf4/eFd/j94V3+P3hXf4/eFd/j94V3+P3hXf4/eFd/j94V3+P3hXf4/eFd/j94V3+P3hUQM0YOXxqlQTRlhwl4VPI8iKznlbkFcCRW6D3IKblzuRdSa7ccif4aH5mgqKFUcg++ZmXEuNo5eygfnTRTSO4PKbXH4UqSzyuim9jbXp0qOXMySR7mSnlkd5GZMnCtoKGH20xiGmXTd7Kih2stomzIdLj8KinZ2LxggeW9SbKaRA5vlFrA+yjhrvlLZi19Sa2TkhfJ1JcQC2aS1+bqSzJI6mTjAWtWITPIdvxyTXW23m2VrW03eyoBqBCQVtWI4cgM9ibHd0VspcRMyco4Ov4UcSCc2TJbktRxNznKZLclSGKaRA5vlFrA+yjh3klYFsxYtr2eV1DDy1wCZo/FJ4Q9fLRyHUbwd47GDgLxByVxF9lcRfZXEX2VxF9lcRfZXEX2VxF9lcRfZXEX2VxF9lcRfZXEX2VxF9lcRfZXEX2VxF9lcRfZXEX2VxF9lcRfZXEX2VxF9lcRfZXEX2VxF9lKixrYeSjYAdq/PuGZ2Cjy1wLwx+MRwj6uSjkGp3k7z2A2s0aX8ZrV4VB8QUGUgg7iK2eYZ7Xy316t2IA5zWVJ42PMGB6pyMGsbaHsSzEBRvJpRnW7aqL7/4HBNw43OuhFduG0T/ABEHzFBkYMp5R1YPMH1s+i/Ps7YZcw/xG4v71tHJkk8ZuTo5uy7ZEj28Zb1jQ0MZAl0uu6us8PHF3sML7hUkZjizLBmzga//AMoTxpAPIb8KkmAtfk5qw7tG0mHRryItBI2jR76ZRkYVh8MLFXUkk79Kgw4AyyKSeesQuHWLSZrtJepp3jtJCSrIOekl2cEiN9mMm9dbYVUzquZ2k3CsSZYQskIuD9lqkxEkcOzMV1Qi9+mvo5441ztEbLuG6kw+KWLtg4DR3p2wqwiJTlBkvwqecRgSxvkdTrRacIL8ULydP3PmkdVHOTVo1ll8xK8DxXw68DxXw68FxXwq8HxXwq7ziPh13uf4dcSb4df3vwzX957hr+89w1vf3DXGf4Zrjt8M0F2tr+MpHdzJC2yfl5j0ihOhA2fBAG40JY/WOY1B5g+tn0X59js41MknirydPNV8S2f/ACxxR+vccf6an9APnU/+mqNZbqwBsLcbopA4sxu1qQmItAeM665aZIV2054uVNRWAmnPBVCrvzG1YVo9UyNZuesQJzkG2YhraGsViWgZ1lkLCO2pWs30ZJIuIvpGl7HpFSTT3EUyDh20BFYwpGRCE4Ln7VH0H5V9GPYkCHW3RWG2BzJDdna2lPFjgySKxsczWYeqnaCF4laQHh8uu/7nAVc8r6InPXXH0hJtH5jxVrtUdl520qe9gyDQirmee/n14RP79TAuXyagtQJxMnur+leEv7F/SpWvdkza14Q3uiu/n3RUzaM6NlBI3138H/ZXfV9ymdst1v8AhRR2jOZf8P8AekzcdOA3SO7FWFwdDWitH5rVtcPibj7SON9QeYPrZ9F+fVGY6nco1Jrth2MfiKeEek/pWVFCrzDuhHOKjhcgsvN1Lmu/R+9Xf4/eFd/j94V3+P3hXfo/eFd+j96rggj7tmx8vOVjvyKKEsg8xeb9+piuj8uriuj8qHUxHnN1ZfTj5jqzn+V/zodFYqD7MlpV+oweYPrZ9F+dFnYKo5TXahs08dhr6h+tEjVjvZtSfqOzvwVG7s41U8FzYj7skP8AKawkXIQGPz6uL/75Oriv++Sh1J/Pb59V/Tj5jqzeY/59TBzc5MZ9f1GDzB9byxJdtlvO4a0JJW2snITuHQPqeIzKDwF313pPdrvSe7Xek92u9J7td6T3a70nu1gcqqvD5B92T+jb5VhXClrR2IFd4k/D9a7xJ+H61iDksznRb+ShhutXvkzcYV4NN/x/WpuAVZ9ynorXDzfh+td5l92n4BzFi2Xl33ouYZrAXPBpZIcNK+axA3VmCNfa58vLa9d7k9yu9Te5Tx5O2FDwa4kvwzTZFkzqQw4BpTt481tRetJEPr7vB5g+tn0X5/VMT5i9ngfPP3ZiPRt8qh8wdgn+n/OpJB9lSaWabM00gzbTNqKi4Z2jybIvy1HJh2MTKdeXMPLUuaKfFMumVeKlfSETq2SInIr710qMooXNkLeU1LDNcxQoLJfQk0+GjvsXhzZb7jSvKMzZTY34vRULObm2/q8OJG6VrweMeaLVisLmJWJ+DfqYzO7NlnIFzuppJGsopdpFPEraB3Swpc2ZmbioouTTR5XjkXUpILGi6xTvEP7xU4NYcwqzCRxwlG8c1YYHbo7qSE5PXTJHFNNk0YxrcCuugS0d7abxS5o5VjY2EhXg9SDzB9bPovz6nXu0brUS7LLfS3PW1e+W9tKaZo5RGCBcrv6KZyMTGgYWZdC3RUsIDB4t96li17UuZ25BQcxTrEf7wpwawWRyA0wBsd4om1+isXtVnVFLcJQBlHN01h2fOVksATv3ctbOSOaNiODmXjdFGEpJHIBezjeKZI4ppsnGMa3AoSRG6nsMT5i9ngfP+7MR5hqPzR2C4rD7HSPJaS9FcSMNsiLHJe9dbxSQmPcrtfMBS4RWIy6h/Lz1Ht5o1RDc7K92qY4dockrZuHe4NYqPaK0c44x416GFcw5ly5SL7hXXWGZM5XK6vuNSYnEMhlZcgC7lFLA5GYA7qjhcgsvN2FxvuB7TasfqTwhqepjf9QajJ4glUt0U/O1svtrC7TlhsOmn0BnWMtu1t00cTJjMishOREFuivov0y1g/MemU8dZGz9NY5h3tsTwfbR85fn1IPMFZnYKo5SasMVD746uzzDPa+W+vUL7VMoNic3L1CzEADeTQINweXqXYgDnNZUnjY8wYHqsqsCV3gHd2JZiAo3k0ozrdtVF9/Yn0X505XjtwV6TXWmXCZMtt7Xrh8dGCP0g0R5V+df7l+dRYk6JIpR/wAqnxxW8kpz2P4Uzy4wtmUcAKADX0Z6Rfl1PpP0j19F+kT5V9H9L/KoPQtTiPFrGRIcymK+tS2xCzZpCSVFrHsMV5i1PnCjZylBasLGoW0rWN6tJNGh/ma1XBBHPWVJo2bmDVZnVTvsTWAZGDKXOo+7J/NpPNHY+FQfEFZY5o3PMrA9iGRgynlB7gyNuNY/M2Y7Tf1GdoeExueGaeNI+A/GBN7+2g6Qi43XJNqyTIGFERRgZt/Les6Qi/TRh2Payb2uajYJrELJqdKLvFwjvIJF62BjGy8UaUcLNAJYbA77GrbTZnmfSoPMFTer512yCELl1OUVtF4QEuVM3i3raoATmA1pxCqlzCONuGtNhcSqCTLmVk3EViH2aP8A2k6OLjfTYbDiIFFzEyflWLGIjVWVTqp0aknWOHZIg4LXzEUrjcwvWHdo2kw6NeRFoJG0aPfTKMjCsPhhYq6kknfpUGHAGWRSTz1jkw6pfMCWfcNKxW3jG2w+8LuNJLs4JEb7MZN662wqpnVcztJuFYkywhZIRcH7LVJiJI4dmYrqhF79NfRzxxrnaI2XcN1Jh8UsfbRwGjvUkWFWO0WjPJffUsUqBZojwrbj1OFm1i5FJ5aRpFkJQ5l7W++v7z4TfpUgMclpGzNwH1NbOVZGXm2b1s5VkZebZvWzmWRl322b1ssr5LWy7Jt3sohYX1FtY3OlRoEktG2ZOA+hr+8+E36VI5ifNJxuA+tRArJaI3Ttb6VHIyyF4+Kdm+lLMVk2iiwOzes7xPmO8hHF6CRq6qOQRN+lf3nwm/Sp9lK2TaGytQSXDsW/ytfwrEGxF413i1Y0f/6Gr6PH+YanlOEXFJIb30zL5Nay4RWVXmysh0I8lKsP0ZspEIKOHXSsCsg0ytcVgFUADPuH3ZN6vnS9HYxlIY17au5alnhhiV1W/FrbvGmQpdEXjGuuJY4Mg1MYJzCoYcOqtLKM3C3AVJDiYl4lxJHfKaw0cS58Q98i+veahwyKj4lxc8iikw+KWPtg4Dx7qayxBI5CrHXXo7L6QP8Am1mZLk+Wu9/jXe/xrvf413v8a73+Nd7/ABrvf40Tst3lpJ9hlzcmau9/jV4QqRWGpNXmZpT7BUORQLqCbVN6vnSnrdb25zRWNOIQcqjkq0Jz8Jb2G6nd75NiLm27WuuItYY4subnNYn/AFX51kxkZQgcCXn9YrHgPJJhgvamk30fQflWHbrnER9qUWjewqIFHkgtZpN5HTTJCu2nPFypqKwE054KoVd+Y2rCtHqmRrNz1jjLwULDhW03VjcaIWkhYBVFuMKzfRkki4i+kaXsekVJNPcRTIOHbQEVjCkZEITguftUfQflX0Y9iQIdbdFYXYHMkN2draVievgwDtnR7sAfZUkmGhdQdM7E8P29Q+i/OizEKo3k0F20eY7hmqzOqnfYmtptF2fjX0q8ciuP5TegJJUQndma1Y1Rsl2NsjNu9dK8roNNWvpRkEqFBvbNpTyxPErgHR20HTSvI6DTVr6VeORH803rMZ4wL2vmG+rqQQeUdhJNLmcuxa24VlijVB5BWJ8xaafDYhoHbjaXB9VdcTzNPNawJFgPVTtBjCiub5WTNTwOzNtGzM/LfnpVlxztGORVyk+uocRntswRltvvWB88/dknSvzFDqdqsF8c/lXfX/Cu2cJPGHJUXplrEeYaGxvn2QtamGFh2k2W5a2o6awmO1MGy2bMBxakWFC0ITWXy81Q/SEOZmAO0TnWsPjHDPhWTKWW/B9lJ1tE7lddpmay+2sR6dq7WunjHdXGQ+q1ZWGVurjj/ndSaWThFJ2ya7qebFYfEzOzG2VCQo8lGI7VLz7NGcWbKajkw7NEynha3zDy1imxIzrG+REvoKxuEBJiQBkud16GMIzSqjZTzUMQxbrh1zbTNrUHR+fYQeYPrZ9F+dYjzDXEW+xzZuW9q+i9rwrxG9+WsPCuH2saIWEQIAvUUyYLYLYiThrr7KxskqK7CTIMwvYV9LonFG72VgYZBmjXD58p3E08qLlzLYqOKfVTmwuUbX11gYZBeNcPnyncTWDaFQm0zKwXlrEuyBjtmGtTJ9lZmA7LE+YvZ4Hzz92N5y/OgRSx+ObHoq9vIBV9rwua2lHMLMNGFPHyA6dHcRHyHU0ABcncKuQrDmWvxBoHqYz056kocqc8hcWp1wrQmJjmAkvwa2M0+aW+YPbcaj280aohudle7VLLhWiyy6skl99TSSuGmm3kbhS4aWx0INq61EsWx3B9c1qjhcgsvN2EHmDuK4aHEbJdlm4gPLUCSzieOZsvEykUUkkysBe1qVpJLZ+LpqadoJA2X8KTE4mTk4TUJXfKjbriiIpLkbxuNMjS8JTlIse5H0X51iPMNRx9dsIGQXTLr7aw8qtlWFSoW1JIkhjmj4ritrPiWlIFgAMop5sPiTDtOOMma9YpNsT1xykbqgySlJoRZZAPypp55jNKRlva1hUuF65vEwIUZOLUBSUpNCLLIB+VDEYiYzSKLLwbAVIM+bPIX3c9SDPmzyF93ZYnzF7PA+efuxopBdW31lhxilBuEiVD12ymNrqpUaXrg8ZTcVyhvFtrTM2hY3tTQ4aISWQZ7m1q8Fi+L+1eBp8b9q8CX437V4F/+2vAT8QV4C3xBXgD++K8Ak98ViFmj2RUCyGlc8XcTzVe+/d5aUHfU0YhlfI51Rb0cmExBPIClqYzd8kcuRzd2g8wdxRdrJH2jfGbHfUeL2zz2bLaY3381MTyQae2sTm3rGuXopsvLhjnrBddL/ZNQmumby1hxGIyRGSu03XqCeXrdclwchNyKx7ct1H4dxLMbAb6upuDFvHTRVgCp3g0ABYD6lic7qvAXebV4RF74rwiL3xXhEXvivCIvfFeERe+K8Ii98VgtnIrcI8U3+7jGdOY8xrYYy0UvIx4r1e4tWxwnbpv5dy9NWvmkbV25z3FcREt5U5PGHNV0PSOUVdUUHyCutsNZpzvPInlNLGu5fqEHmDuIn200bhcva2tSvJLNMV1Xave1HE3OcpktyUsmZ45BpnjNjTkF2d+M7m5rrM3aO1td9Ro7SFo+LJfhCtqXklktYNI17VNKpOaWxN+5E4ciM7O9rcE60EnXZPycx6D9T26oWQjk5K3Vurd2CS5CI01ufu/LIoYcxrvC1ljRVHkHc8zLZ/GU2NcOfEMOYyVliQKPJ9Rg8wfWz6L86KsoZTyGu0HOn+G5+RrLqrjejbx/EskLYluCdLaaVtsVLIYPKx4VQeYPrZ9F+fV4Y3bjyiuFeaPnHGH61mjYMP4hyLeSTxE3/tXbX2a+JGdfbUTZcoTeB9qgALAVB5g+tn0X59jtEJjl8dfz56tiVsP8ReL6+arj+Hci3kk8VP+9K7c+RfEjPzNZY1CjydhB5g+tn0X59nmwzZP5DxT+lbOVdlJzHl6D3QBrljyCu8H3q8HPvV4P/yrwc+9Xg596vBz71bMAo/MeX7uzSMFXnJq0eeU/wAiV4LivhV4LivhV4PifhGu84j4RriT/DNbpfcNf3nuGuM/uGuO3umuO3umu+H3TXfD7prv3/E0FE4uecEdyyIDJJ4qcnTzV258q/4cZ+ZrKihV5h2USMswZVAPaW/St03wX/St03wX/St03wX/AErdN8F/0rdN8F/0rdN8F/0rdN8F/wBK3TfBf9K3TfBf9K3TfBf9K3TfBf8ASt03wX/St03wX/St03wX/St03wX/AErdN8F/0rdN8F/0rdN8F/0rdN8F/wBK3TfBf9K3TfBf9K3TfBf9K3TfBf8ASt03wX/St03wX/St03wX/Si6q+XZ2uyFeXy9wyuoZeY12o7WPxGOo6D+tHKeEN6nQjuUgiAOVRy1xV96uIvvVxF96uInvVxV96uKvvVhjKAMzaWP3aODnlbREHKa64+kX2jeL9la7VFZfLpU1wAyDSheea/nV4RN71TAsXyajNQJxL+6v6V4S/uipWvdkza14QfdFd//AOAqZtGdGyjTfXflP/t131Ph/vTOwXMt9w5qKu0JzL/h7vxpM3HXgN0jsykYMsnirydJ5K7e9l/w4/zNZUUKvMPu0ZhwhuYaEV20bWPx1Go6R+lZkYMvOO4YnzF7PA+efu2bHy7rlYr8iihLINPsLzeXqYro/Lq4ro/Kh1MR5zdWUc84+Y6s5/lf86HRWKg5HtKvYlIgZX5l5Ok12+TT/Dj0Ht5aCooVRyD7x2kTbKTnHL0isuJXJ/OOKf07PE+YvZ4Hzz92SH+U1hIuQi7fPq4v/vk6uK/75KHUn89vn1X9OPmOrN5j/n1MJN414z+XYFW3GgqqFUcg+obSS55ABy0JJvo+VIvGvSyIbqwuO4GbJntyXtRkyZCDYre9daCHTNlz5uwxUbhAImsLdRpowpYW41RSNa7KCbfUbGr4ZrD/AA24v7UJU70vByX30ssRup7DE+YvZ4H0n3ZP6NvlWFYKWGztpXen/Cu9PWIOQgudB6q7zJ+FbDZybS2a1uSp+CQX3A9Fd6l92u9y+5T8A5ixYLy8a9d6m+GauUlA8w0JzxDKG9V64kvwzXe5vhNTpkOcoeDXFl+E1HIJM6EMO1tSkTR3I3Zq3/UwgbK6m6mv7TBFPEN7CsNsMyrMdcu/oqF8FhMbGL2kDobEVioS7KhHCy8u6sFiE4g7W1Ku+PDLc9NTS4qDFTm/B2QuEqZMQsgKOMpkFjao8Uzs0rxgeQCn6RUt+LJAJV6bV9HFuNJdzWIjnZtjDoEBp8Ers0JFwCd1YjEYh3uGstmtlr6SBNyOX21J5x+VYj0o/KsDEhYbRRfLvqF8FhMbGL2kDobEfUWRr2YWNq7XM6dOtcCRJYW4y7j09hivMWsZ/qGr6P8ASGpI8NhtrszZmL5daOIljeOxsUI1vSticIYomNs2e9umooREZDIDaxr6PMiZGzm63vb7sxHo2+VQ+YOxX/T/AJ0zncovXXIxCx5tVjyAikxCoNq5yAcmaoztlnUnhrlC26KIbGw4WP7O4lvbWMG2GaK42iDjio5FmuxyW4I0HNTYWCQRCNbu+W5qTCzOHOzzo9rUJ+ucjWNuANemopmGrDXqcKCP3aNoQvmm1YnDO5fZPwSeb6kuWQxyIbqaMMuLh2Z0JA1+VRYeN8rRaq1I2IxSBE5IvtdNTYslMjiwHLyU0QsG3qTUrTMrSyHUipTgZoxHJrlkG6mw5n2krG+Z91RRta6qAbU0MZUMSONWGVWUNGMrdFYWdCgjhFrctNisFKis/GV91Pi8TIJJ25twqU4SeNYpDqGGorE7R1ZZd1t9SQJiEGHc83CqXCZ487PmBubVBCXyyxAWYUjYjFIETki+10/V8T5i1ioJ2EZaTOpbQEGsKkDBxCS7sNwqV4sW2GmBs/Ctf1Giztn2M/fEHGUctASfSWIkV7WUODf1WrAjmV/lWB8/7sxHmGo/NHYrPsJpE2OXtaX5aaDrfEx51IzPHYUMO+EmaVBlGVbqfXUcYsZ0faW8tRpDhZE14bSrYAViTLhJJWd7o6pfTm8lfSELwMHmBZbDg7t16WIYeYOmQEFKfEbJ5IpVAOQXIIp8WYnjRYsiBhqajR1KtlOhFQq6lWF9CPL1bjfcAeusfds3CGv37ifMWrSRq4/mF6yxoqjmUWq8kMbn+Zb1lAAHNWdIY1bnC0HKgsNxturA+efuyfzaTzR9TZDy1js5u201P37ifMXs8D55+7JvV86Xo7GaYYrEqbE5VksKgxD4vFFjqRtdK2cccpObKeDxemnWOKaXIbMY0uBXXWftXPSI8c0WfimRbA1j87nIjC1zoNKbEHMkQ+0w30ueKaJX0VnSwNGDJI0lrgKL3oGxF+Q9j9IH/N+/cT5i9ngfPP3ZJ0r8xQ6logD/ADHdXfR7uldsAt4wqbzDWH82sSf89qfEnFbCPMeCijTppG3oMTdui9R7bKczDJpfWsfs7NGrqzx+P5KhlhNo86303Vaf6RjETW12Vvzpr6kYca+uuAuby8lcVfbWUghuY9XHH/O+/Zm2efMqjfavBj79eDH368GPv14MffrwY+/Xgx9+sKNlkyseW/3Y3nL86FBB9s2rdoNABV7x+bb861HkINSQPqu71GljjFlXcKYRrbM2Y9NbTYjNe/k9lSZYh2zjjkNbSOEBhuN72qSRVs0nGPPUgWMZZDdhyGg6wi43XJNqz24bLZjf7NAAeQAVdo9PIa0PlU0D1MZ6c/fu0R8km7XlrvkXtNd8i9prvkPtP6V3yH2n9K75D7T+ld8h9p/SttK4ZxuA3D7saGTitWRWglUbi1wahjxcaIpBy5dxNAgXKkNbnrNtBanci2c3tRgihMpKC+XkrwF/fWvAJfeWvAZvaK8Bn/CvAsR7K8DxPuV4HifcrwPFfCqfgFMgFgd9ITu3VmY6Ut9KkidiGVzuW9ErtHPMENO8wyvK5e3N/GWXcw1VuY1sZu1zrvU8vRWawvz1s07ZO3FjFMznNNJq7dxXFxJd10cD7S0GQhkNXy61sYhmxD8VebymlQb/ALR5z/GtpUDV3ye3NtDXaowt957mXjZ4XPKh31Z8fJl/lUCjkXU72OpP/wCdT//EACwQAQACAQMBBgYDAQEAAAAAAAEAESExQVFhEHGBkaHwIDCxwdHxQFDhYKD/2gAIAQEAAT8h/wDPJqKJhVdR/XKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKMD6hdqa9z/l/YuYpHRYc5anNhuGPBmkZfsD1XHBqtD4Mh8qqnvhhBg8UZCYTldz5IVK8tVERtChCVzrPK0aunxVzXSjYW/DcLytWPGAwiozTvzBEsbHsTOrqryq/gTOrqryq/+cT9i5j2vRPR/pOq3UbJlKIrL+840JeNzkAXm+/rHjzm0uQtqFl1IBepkuIamOzriDEF7G6mWBoFzuSAFXQsu6wnnLgO+KxKzXTtcqFqCayOnIZBg5GUQql1/KOoJLzknoITzlwHfFYlUGFW67cd80XCrVrPYOUGQDF96tY5hakLW3SA50Uam64ukOw0DQyRM/nVbevDvl0QA+UCehB5fCRxJbHqmrqRrQjNSGzluDmEuWMSDFUuv5RHrFvyjVz2/hA3JgYCjUGpbPgEJ5y4DvisTSGALDufhLoh/tGqSD9I1GMC+aYdHaVnIYYgsYTnGfcqDdYcqaqy6jRtVTdJdUI+Vjnr/wAyn7FzG+YIC8OZRuaHx1ozG0g7MbXXdMLzVXA6FNPGHpVDE8iGCwgkNr3O6CUmoVTbOWCNau4YDxAFDg3Dz6ix8vLABL6QmuNIV24KSrehmFvx4WHftLYHYKRoZ1lXDTYd2VdZrWASaQrtwUlW9DMC7Ci53FawgQROW8fmVNgl6qS1lhiLmW8ly4MErKVyQqbOvWoVdaHmmtuGX/0gNbWmIpFMAedbTLY5VXgayyjtA7Uu2FwKmAaIuI0QGG8NVUmIBJNV0P2gvrCnJuZPw98hzAbtREbqN0Ms/wBUHfCu3BSVb0MwGel9615lipMneddSaKwttwtvmUyKwQNzVc2Zy56l5hKMTHeddSOuVT6hQXzBloBwh/zKfsXP8MEBV0GWvlmjoKgTpoXnW/8Apk/YufidQq5BcgEE3Olm0rKI5Uc78EaSRrI3GLrbqUjWjrAuFOvwlWNdYWPBjcGRVYHvguIRaDDXJ6QjVIlZ+F1nXVPeu95ie0VtXdIcoAQHrCNZaQDyHeeqfVMqiTD62MVMMgbnJezTxlwIGxKrXRn0gfAasFOf2mQ6L6s5XYjcxYxTWnmandMvzrBrjFyoEbNzXlg9XKC5y/eJfE73EKxUwyBucl7NPGXAgbEqtdGfSB8BqwU5/adGTIHLsj5j0ad9QDRTvgKchWbhAzdIBNyHtIyNi2vSLJ4qp5Tb/nU/YufiKhoVuasoAzKXGuVEGslCNx6NAGfqB11mc1hTtp2ewc9gWigOjwtY0NEWG9WczIc+P9Tdi6Ea4S0lkVyJLaw1nqn1QxoopRFiARFJ39iGl7dIFIQm3FKm8wX5YBvdYTU7otm5dd7rCYu0RIdNUw3sh45kmus11CTiWIBEUnf2IaXt0l/k64garg9LwTHgvtCr6QFx80E2qA7IFbDhDQ/51P2Ln4ibBZCxmmOEIu8hM5pCPR3ShZSzYcXBZdoBHjDQNoFbz2ZFndIXNtDEPe5hrQ0ZHjAGb5TXh3zQa9p3jvOnCQPWdA/cPKaFfKweEHmjYCPWCJNYxvo7piPtVOHdGxvTKcOKmNH1mHlAENdQbeXZ74+0SL5VFV4TqVv7xB5o2Aj1giTWMb6O6Yj7VTh3Rsb0ynDipot0MEyqZCPLxNYmQaeM6DqL5p3qeR/y6aZeWi7xXpOD3Ba8oknOXmB2a6IEoO3OSGO9wIZiQa2e0wYJqILYNn0h359pgwDiKDNbAYFHR7YwYeHUa1HaMGGaFMtdYc1FIiaKTsMFjm++V3TyBET5/HYMGDBgwKld5Btw/CYMGDBW6cHQ1M/CYMGDAAI6BYWu0AzAurhr8kwYMGDBgwYOUcgpaTW/P/IccZzJtDx8GlMmrMFTVBlMMx1L/wBg9mkBShmgoVd6eEASveXTGIUgVgFbYxBvtS0pNH5mX54oamnnNCdAU7GqWiu7c4gYSmsGwomjWJ6p9XbYtofZPvLmt+g6elfDFRqE21bi5jHALTT7uUsc6jaa9zXTs6h84waEvIOkh4eZVyokZQxmUcqJmUMRPRaolaXeXwidIU1tXSHYDshmUHHEthWhnNxUErV9oxLSnqNrXMz4XZacnlD2FWRuiV9+wEckOTZUv1gAMdctZ5SUZIc3NJpYFyB9ZdHEBiaWcxZRsEQ776RSiBpXDXp4QFTSqDduAvDGOMHPMp5ArFF2df8AltIisjLZcKfiry4bTRuO5S5cQSpoP7zVRRNQbDGv8i1VNMJsm6VuI4a2CYWMEHQ5mdCCwINnvji0O9AcszIN5IGpW00WhxV2RoxJ+LrJlt26XNniGl9yacRd0PF+GLr2iryGXFqe7Opeu1x8xcGPcdlzcl1lhDXuqz1thR3lAFXUCAWJM1vx4wPHsxrxQhfSaG4LpY5xUBVsTEmujyheDNDgRxkd0Iu+WekXhKnjsvhVtXKnziIbDns1QWIMiPdiD022ANUu2pXvb194N8xPNIDHBeCG0hVq+/JCp1xWwXkbwaiEozPJKu7Tbc8MDUeZ2FMYm87wnRLyHidH1/6T3nj+JFtQNMsNunzd+ADo1X/J3DT2gd1RcZZLLDXeX5KLuJq9PAwTfDqTzNHI46Wx4mdljadrOWqVJXTBOY8ZO6VIDqC2L4s/S5mTIRVTKgJag4a7cWaM1iuEHF3MwS8pyjxAxsdi3NpB74o0njM9547bWwva5e5Bo0A8urKW5oNGjKjihml6LtjT0LLM29jFgCsbTWoRfUTMXrOHmM7ajAPWv2j58VAcgxHi9BRHXTL0j6EzXbtfPEoDMhotAGkI1SJWfhdZeafa/E3nvPCYQ2GkPcdeks4FFoLGrj0hGqRKz8LrOuqe9d7zE9orau6Q5QAgPWEay0gHkO89U+qZVEmH1sYqYZA3OS9mnjLgQNiVWujPpA+A1YKc/tMh0X1ZyuxG5iximtPMcqgtYX+VFdj6MuCvrMiLkAgm50s2mENhpD3HXpCNUiVn4XWWmnLX4m//AB2s6rTm4SmeCVrcDBqWdWIqAVs+2vzN5JbUbqICx55A3s4nuHSMFi1ffdXjKIztKbZxcAxa/VZ6L6kY3CzOrPpGpDgvc1NI1OLG6TWLVLzYIQbbg0OZnz7T6Ojee88fBRbDXecP58ZRKgboCe4cOyywhA2u64HelukULCNj3GwQY8DZjdjpfYe2xQDg5hRA1xd7nBNFAdHhawmf7tD0HOZ7zwltCrTq2dRFooDo8LWNDRFhvVnMyHPj/U3YuhGuEtJZFciS2sNZ6p9UMaKKURYgERSd/Yhpe3SBSEJtxSpvMF+WAb3WE9X7SoGU126VVrFU0BbitlAGZS41yojQGBhXRZooDo8LWAyebQ6Yc5/44ENVXfBWkuLigBPUNRGmtBo4qEtQQvAtxNbOSx4gaYCYYatUVppK7BnvDTeYnLeIeJmdUYFe86yjhkLLOQwRa841NLyRO5IeLWJedbznxmTnrctnnKo5Ol+ZvpLNRw6vpoeDETc0h1ZYcjadB80/cZo1Pdv1CbRdV9C0FdhMLJWtVBA6+2Gd43kQBkFZsOLnXSvPnOhAcnlNMHAI8J3CTSCAbQK3mNiBAi13jRP1AmGtDRkeMpU6Ao4YZYFAFATWfqFdybaGIe9zDWhoyPGAM3ymvDvmg17TvHedOEges6B+4eU0K+Vg8IPNGwEesESaxjfR3TEfaqcO6NjemU4cVMaPrMPKAIa6g28uzKyOtHqlDmtVPommOEIu8gpI0k+XiGtDRkeMAZvlNeHf/wAzcqXIPo7d7PZWODB5s32cUegPSUwXA/ILdUBs8Z7xa73kk2n455/ssUB0ho941P8Atr0kbk8cT9OZXKXLyuV3fnBFuSrxtzo4hPgUr8PR7PjAGlooJ7p+890/ee6fvPdP3nun7z3T957p+890/ee6fvPdP3nun7z3T957p+890/ee6fvDwNaLE/5ywejyam0BgCA6K2/gK36fFfyB954f857brNG4tvo1v9E0KgJY/OH0XAMrwG8z/Yu/Y6bfyB954f8ABObQRSTSX6uCmuYe+jqOu++kXbJABx3MuZBGAqi9lhjaDQvrQUQrE3JmYKoVa4hiwaqR9mYWyrKA6wai1P5mWFtTvG+aHQplTHXimSjAZzLQoklGQznrPf8ASNILtvR1jxeVNSdT5PvuvZmq06XoGebfesfeKF93i/LwggsbHc+R1TkqJp2u99jrK1H3BwhSG6A+P2/kiPvPD41otlpbqtnqkvw6Cr5RuJGFKH9h7S6Qru4mBfUmveawvTWFzolcjHdoAGkRcl8f7ANrKLW874wpa+TTj1l8mpji8+kcBhb864FE9t9YkYFJyVr94q1Fy0IQUlZdWJ7/AKQg4oMhtM9KiDOwqltda5+T77r8CoSaiRsvqy/WJ6cq/rb1n1zv2nDfwPzS/Y/pKXu7xJ9t39VPQ/T6JKX4i9Zz/AEVdAVzYaes1Y8PX/ER4vQUR10y9Ijxegojrpl6TVNvj4k34nXlCF7wiFI618KZl42c14Od56p9Xwe88PjZJNlwoMGNU75bmXqyksC9NNotqWLprmV9iradMON5dqOgWOFrd/ETb3hV0vq/mES4pY13G+s63iwvZYdNZhyIXdYvw0mZi+XIaESGmal95xGtgNPPWnMzMde4gaKlBkN2X3IcrAybFOuX8/1N9tRPZFWdiDBc1rV72Fazcs1fdpCJrVyHzlM77KHldQAAoMARUNE2ad2kG7u1zK9bWTb4yxcm8KHldRc69Bip3uSrnW7IL5ARb8Ws4NDBXLXOhrLhOYGDuut4RN8ZK8yb1srd8n33X+YIqBVoIyFIBbAauJSRZ0q7ju7Tn5+rukSPpvekfpNFAdHhawmf8kPQc5nqn1fB7zw+M+MpS6BVVT6iZYc0Kcd0TD0oZORljhMFi6wWwCNB811utJYYC/CebqXQDod72dNpgyNSxl21ms0ajWnbWVyRAbHPdL7hFKraA1x9oamawF5KwR+rSxMujGd3LCdespSBL0Q/4b33X+IK6U5KvEFoDRVpVqsZ5grYtmN1Z7/iFGZCkd5pVIOgjYhWg25IIBtAreYIBtAreYABrBVbzNYvwNnLDWhoyPGZWCWpscXNCvlYPD4PeeHzwhtaKCG37SsfHswFQLHuc/2Hoa5LvxYI16GX+w9Zb7j1lmkr9Oln4U/QZ+rz9En6x2e/aQDoj8z33X+IIYhWnrJWwu1Rdqqw6VEAWiMIaZlPj7fcXvr8YmBNqmkLF74h9UEa/LCZJH+I5mm1wAvCNgXVaCLhTVH6Pi954fK3TnSXNCnTmbLqzZ8aY5mVAN9iX1yoPSKghHd4jaaq7HF9Sbaz6s96nd9l7N66zc7ZV1bBPU2YdWHlyE3jkf6wNHrOhLR/xD6u0XgF1Wr6wQbrkJ0uIGRLyNeOIUc+Kk3iPhEq+CVhAXrl/wBJBpllt54MKc3d/wDEafpOVOFo056Z6kHug7rfefr/AOoyKcBLK136SwP8sh2iwvtrD8v33XtEQsZLXczciIHQzoyiyelVvONjOt48O+U2i8BRaC8TovprKyDXIKTqzFFPKGEPYqI2FW8sVE5hqAvSCCa6U284EW9Esey+PWe95J73knGUKZowSXMhpvnxne8kpcekOcNJYuMYPr+k1ua0Xlb8OH+ZNUOC6PrGNQStsuvpA5LJjgzcWL03nI6Gpqm5iB2wufi954fKF3+9QTS9xPXvkSADIA5YAgDmCtlqS4Aaue7eVTvO7rwXdJrsV3PauZq95m5oq/CU/wD5Lng/q2D3TZFqpexy0F9+31QcUNAJl3YjHuu1ePduy2Th9e0E9B9q0eYaPoiL7P8AlnvuvwFZrnyFGsVuOUcJsUxLYrNo8hES0tWb0XHZgrU9MCFTY6tKZqPnqmhRvBqX2Jb1liZ5KcEbniBYNKl+H2JjU2CBsEXt1SjgU/IEZPTcnvfjFBitCo64gKyC/wBXpLjWab3Zq+s2ow7vvVwswyNisibkCtJTXwNfi954fKUBBQzTxlKFgrHh3zSvmk7xnRfTWABQUG0WQUUzE68zp+hHkgbrQ6O8TJBzj/CdOEges6cBA9P6vqqvpEW0fcnJ5Y8oZYCgOzPwj0w0OxUvR+mek7PMB2/NfB8YUOCBo538MPl++69p+3hmi9VgYqaAA9DSaMTc6yLpLT2a6eqHjeOkbLu95d7oiI5yy+MGgVjWt9fSXkpAGzrjmMNPQaXqE41kFT32zpL5gj4RosrGjYVm9bMQdATnhoPmCKQKSMDwIOYejF7rPgBtALYg/LrqVaVfYCIAZVh4GtFifD7zw/v30Z/VNdyJUYGPrP1ifpEPEuB0aJ+8o1ge1PvH8BqQKkoJMcYgXi7kpQWcOHdlJ9lDQL4YF5Vs8VWbczlYtbpBzEpvNrBTHnS9Sv7xh6aQ+V77r/LEcCO6I80ZS1YLm2aQzde0au0qTbTC2BxG+6JCw1EMXEIBQjuN1zEcVqHD1w+Zahl0AcQjWYAwZHZCFTsgYwY1hm7AFpayMwY9oRq6npKDcU0q3ns954f37pfdaGj9ldlHZ7Xomg2n6R2+lvrTBLaFDyDFpBbPqa0rMsFvVl8PBBsPBQJtpiWfbQENOQrNzOq2fAL54igHqW30pWI0ok9Ac74wdY1Onhs8M/WZQhlOEogBoJjzuMaezF+kOTYpVTb5Hvuv8sRwe1fwkuMqq60wLMxG42XKzvAC+raCLiVA64GkEWEGv4hvaldTuTw9kzE4hayJFYurEUAJd3yWe2KnXbneYeUm4NF9vvPD5gK/l1dEP7r8xH8P5T9B+U9h+U9j+U9k/mA9+Jb8H9Zbej6QUHur4Pa9EKLfT3XEL4pVGpcDrZDdjpczblQObvrEZ9iUQaZ2uXbIqsPBa0MY/FLTuOYuNKAcHMd5hInJHTyj+EY5sdADdcB5xqoMk0afI991/qRH3nh8y3vGP0bP1bP0LP0LP1bP0bMSsijiv6xeSw0Hsr4Hevy8PhPfH2mmBI6HhO4TaQsP6AROgYMnlLikLZTl3RLjCg8Bi4AQAtd4rctmMAWWs2HFzIy1mw4v4E0qeEGz1JhH0bXWvyEplRUN6zHLAWJufwF3FHKoH8gfeeHzF8ce/dP6x13P0J6X8Gss2jSulQSA9KG/GJsYhQIbmqJDOaV+qLBTVH6IaT9AJhtAW4PE0eiYPcN4BbNAE+cGuVYgZ6x/gUSbdfi9MfX5I13DTfdN+jU2g/mlfOriOh77sg0C0rZ1Lv8AR/IH3nh/D57Nx/WKuuiRo+h2D6WL3u0/BW/EOqBps7j2UtQDppQumCgz0bnnb0gBcxFVdXBM/pwHWq6Q2iVzZriZnKTtGw/MJF9A2aKhkSyhqMWQICoume9zMivG2xyA8qX0blgJ+3blyH9/lLX5xZ37eK5erz69DV5k0tvqj2dZ1zgrPkUZXIxo+r/RA8rnvKfdj08ZaOSHill/kj7zw+Z7rxOJhE24YhZqIFdOfh9e+39Y/G+lmhALeS+vgW+E1HStW/Vgavdfb09Z3nwk/DNgJC4NLd09xlQxQSeg8CTAVtCkTYIbX2rqrrZ0llx+oLe53tx55mHrMLDKAWrwl4zDJ1u9J9jTN2d3N9V/LMnQeN/njNY6gfoYZO52ann5ra58P1DM94vrjnS3SrdjFQEF7KLOxSt1gDaXu/1GfT4DyoToRgb8/mG3SgWJP1GfqM/UZWe2fqwesEuSxOjH++M/UYOpztEv1GfqM/UZ+oz9Rn6jP1GfqMDAegoD52Se1cQ1mLkncaEqb2czYp4lSmgvL3zrESNfPCaN8Sqzn6/kv+sZF1XgRuP2TVZOqJ9QRro/FwZIpOcD7fCD0hpd3iZPUNKC/Ml8BUb7OKJmyD2cTkHv7EQ9k/ae5+Ce7PtP1zH/AGpYNBjxkt/QlOJo7/dyrFwzfE63hfEPieY7yhnLaLFqXD35fPuxnwM099JcK1t3GnpXwOqWbRFW0agU49842QhVz6wCjELu5QOKhOwVECfBUqVIUGaMRlkG1E+hGhXQILacxSG3C6Ay9O6JomOojolsQcxRsu8OZaxFgidUKhkwLE0fgsJl+GYPv5Sw2B4uj9vLs0Jh1cI2DbMf/wBBli6wGl1xiKWQVYjlx9Zkriakc4qia+AMbeEEIaLxRRiWKqVQkfi3DlSWYtNRugHd1nDj2I4b1zEkjQakdsKICA3ws4KUw28bRV3BmClVQ0e8Ofj+5A5Gl7NbxKOVJGwFzYp4B2DqiPqEQL13YkUQMI77aKgGGAjyhv22n9cw0O9I27nSWba/DJmoprdN3dpNaDQtXgIa5yJ5Q8O2jiU4J0U6Lyn66fqJsvf8B09N4HyZwH1GNED5HK8a18Zgh5pbRCvIWBxcNCt8QCtPn9JwUA0u++W+FVrT7fg1O6Z7g0b+biPTNaA2obMsvUS7tvREA1KO1qOYx4KXWRQN6+Eas6v0U9ensvKFADTHfWLYWMPXCJvCgrqRycN3bXRrLHR0hKvHwY3RVBamzY4nm7CvKCLCmt/h4FMQdcCUyamsehT142x7FPXDbAG1St2gQntAvjvpNfIkBuqSK8ghhWnhPeeEOyZD4AY84LiGG2lrPGsrdgcymdvacsLZ83/v3H9ePLoHnjmVnmF/nO8TwHdx8rUqXFbt+kvwmoF5h5NRqwFcbgbfwvf+U9D+nwOSKmBbVuWatm6FHXEU4Fis+arWDa9mbandeYKa0dncxrL5uIXDziOSpcXy0JbuQzFrMUiVnEUGK1Gi7gsV6JgRse90nXtiA1NQfD6J2KK2JmoG9QoUQhoRSc4jPJoXnMcUYFbpXbe58o/uOQNgWmacwIt7tfWWSBwMuujEV9Qm9aJ1b8WLpgNs1Us3ViUK86GFOnSAIFFl3CRFaFOIIQlWYcfN/wC6cf8AIe/8p6H9O0iEyjDZePhoc+6LqVDfu86+B8QHpapouuyhz7oupqfB6J2aHxZ7FOAiVUMKcTD6dmFUp7cIlVDCnEw+nxokAN2EIVUrqflX914/4PgM0o8H5vv/ACnof07aCjmnKURiC2vI1dbaiYurhF0jv+JkrZVQWapRXho2xWvMDsDCNLhmyh2Xcg3WHKmqsuo0bpTdNyCDAQw6brl4zXML4kdpJDq0eJQ2HedSMzDCrOxQVURwVFQqGSLYqvgOOWMsVrQHCBrt9E7NCZVvnZ1Na5h0hFy0oqa7Uo2NXvhOHI+8HKbhtZS+gMtVLVIqzVxAW7MFzLATELlFmAC9HWVcahvzBcxsj0HeYJyjjQHNa9HpDmckcLVjt2rckTva/qBMxGKPHeUI9QfftrHv1cT9Z+U/U/lP1P5T9X+U/WflP0H5S1HyUeP+DC6rng2bgD8ANe/yQi47ny/f+U9D+na2/PNHQ185cYKDx0utY4JAriCqTpcAcTnDtpoQOqsRg7uq5XK5wKxPh4wyn/HhvcJRiY7zrqR1yqfUKC+ZZgryncXpKpQDhCH+fXMNHMUEWhs468zOXDoacgzffKVq5cJS3hKYHOO6DpK4cr226uvh2+idmhMaUDdE3qJHCKLQTYsQpChNjRhaXBeF3OCPX87L2zUTrz5oJir1mV9Fl7xAQO3TTs8E1297iVjaZX0WXvEoE8vQts6SyNoFtV35TGEAtqu45MC1WgmgI4voa+gm9e0x3bHcQt8GU1fL8CgDUcPWdZLqJdRLqJV5Srylp4VBUdw/qgcCo3IcxaLZ0D118okDdaROg/SPSbftqvJK9jVFFr3CLV1B7q7UhVh0AvWDEuqIGdMwWt+m9HYLALuy06Mttq0ocEYiFquHvcRzxVvdugmkFxhtNjWICh0tDpAASzWLyzr52nyiyxGgRutbqpS9MWI9IVbNAE+cGuVYgZ0zH6BRJt17Wynrodxp9UGhuOXvvy84Nlmnyff+U9D+n8b0SEZMnZyNTv8AKEr2swt5rllnaci2tXPzBdJKyvpndl6RjrbdFd3u730/uS1ylUctYkjCRKm8IPd3zTpC0GhjMM3XMEqD8O8T6yogdyLsziEaCgDpK/OYLWqzLOlHPopiIJmNkeqGkpMbST5gnrb2KXHYh9JFyVdS5C7jDrcLviUtCoOlmCtDzZmD0xjILBVEjo5ICL6Bs0VDAllDUYsgwFRdPVz8CARLHaLq25re78cdIB9tRafIbORIwDnEGbp/41NNNNNNNNNNNNNNNNNNNNMUYCxAkDBVAdT2kFL70A/suLo2a1tfK2MEnkvvpNX4+H26HmzAUACg/udNhYZe2DF++JQU4oQF0ExK9EZFcuF07NjiDseu8nUKCOIhkc+Clqm1SXbBCCPBqupRLIvuyji1U6Y1mZdrUZOiNvOG+xQQwVwrjsrLfkLG+ScUDC+8xHDHuF+i8piXtvjBcaVgTWo00SqwBoMeai/BjJuXNQKFtF3FxfdlG5aqZ8JBNu+K9IafEqedhPYErH3POBdCau9NvhWzZwOJ+iz9Fn6LP0Wfos/RZ+iz9Fn6LP0Wfos/RZ+iz9Fn6LP0Wfos/RZ+iz9Fn6LP0Wfos/RZ+jwiw6LjKeDQrd8hXzypsCvwr7nlOWEda9Xf4GwjoCt5z3T94EFrRYkEQrWaA5rtbleqUE6+XZ2iIaw3U8fCINLRQSw9fgbPJz/w6e6Sea+2k0vjoPbqeRNCoCWPb7Fx/LPSfV8SgVaDeLq25pe78cdYB9twafEXFjRRTzlSlZFp0i4wESmXetukrBKsk3pcYBq4chxnHrMGTzyGGJfoEvbCm4TERhZK6WQQC9NQlijImFcQzwfglvQCM3cCYp14l2U5QCPC4YlbyCpdCjeUxqkXHtM0/IJeiukvqUFhUeQSm0ZwlmojHGrsyzWq0ILbOLDdMMz0bdjvb939OjI+FMinrP1hj9/K3kfHP26cxeKbCPjn7BP2qdCDqzdeL3d9p7F+09m/aHS9UUPmnz7gvlBf1zvw9YLsyRT38H8RMKdH14p7Fx/LPSfV8LYT10O80+qDQ24w+5z5QKKNPlVZ7rrHzzRd7XVEftRbWy5fARS2xxKa/q7ZzdYicW7QXdLvBGmhVmuYmBXScmmN4vR1JAYTRDypmzBAEpUJ2JqXcCLxpzRWk9Ni2WbFaFM1HVq0qllB3zFNqHZJapXZFJXFuWGh/TI4VS1X4gtNr3eGEwh2tR4azXxHQaStURlufSG0Hm+pKUBwF6XWKl9klvYDlsGuEa1pdQorx/8AGNP1pDrSiNlX5wC77wZ/tf7iT1tShy/E8lGRraOUB5B86u46OSWl97tbgK04oQ95+J7Fx/LPSfV2hdFzwZNwf4ANO7zQgYbHzFD1QgXpRXjVeyxABuz9F+Habb79FnXiA3/WLQsDRTsLfHrE79nby+1dmXdyMT3dmpn6M7PO/X7RZuiPb1dTxteEu5oA9H1/g+xcfyz0n1TV6AlBNC/f57dfIxYLq94p+38G1XVTZbFjLeSW8kuLFY9B3+s6GN6QE2OtNflXb9EemGnY8/RPTPTdi8Yvp7Q9928gfmQ0TgiHcDP0ev8AB9i4/ltQsMtZmXnuJYkGgr6J9ev8M6q9Bc/Sp+hT9Wn6VP0Kfq0yFjvBx/WO1x9RD9oMllhnPdP3Ev2kl8d0wWgHdtHICy5da0uvWfsorfIVhegzWNpWUPCCq971mk4y6wxHF1CdnJsPOIVQgaHrmPvVGDYSv+qXi7oNl7BqjOdoVLR7eIQW4T9Hu4jaJBStM9Ewy7+d7Fx/LPSfV/LR7dx/WKn91pQuPofB6hDhLTfAmR9pKx0rippuGTZbnyJaC4xeUWYeUIvIdTMK1zPvVBrtGZmO6GZq8Mg3B5gsQ4tIWMRxb2y3NdEca7FatKdlXPSimPRub2PSNjUk0E7CYCyzTggdj2sz9HKldM3jxhJKdeBMleEaBOe6N+5buYausw/vQibL3Y3thkNO3mOZlkY4u5g4h0yXWRlT8qal03v07PYuP5Z6T6uy+O41pU1749NgaO7UHbMqZutnSE65HmOG20cwgEmb0TpKlVqSa23fM56x59rdeE0cMC6DyTNihdamM9ezgq1XDUaw7cuEW2geXo69JUlbOdQpYigVXZ4u55B2I8Py6+t/T+sTud6Q0fur4Hs6wnK9iXBit/WlN9sGy6GGIQlK2c7gEDt007PBGOr+tlrprG2dlsoytNKl6MhNHkxrKa+UdJo2aMXUWu+cyxFkxXjKwu0NrxqvwKKLBvQQ+6bKvlHaX/ZMo47FDXdppLqVCu+eaGvppdoLFBBJvuXLy37We0cRGDEDfLeUyGzwcIa6P0ENCexcRXr8rB4y1Cux+aanYMhWs2HNdlSNOVRwvnsAG1ooIZYVgbE7G5XqlBOvl2duND1w97j4RBpaKCWHr8DZ5OfhPSfVOEq/Ag+uTWa3prcrWi54BCwsVV4IAYaH00Vy3XUyoCtraUteCY2cLdbGLmXZb2fpCIsAG4/QntHMAIKYy27ce8TItw1fg954iGkAXIcxgR7hsOkDKGgH1QewlgcRaZbdfKE30QEUNWVTAlsf6xeTepDR+yvgQFUA1Z74+8w527JXh8CgWtBNCrl4fH5BUYaYfUIHlr2J0UKDa+MCGajHzGH4fbgFxKYW2Xs9HabstbV3llBO1lpDuFomkHQ89M48JS+Y2kdd8w879YBTmEKxVWDGdopM0x3d8oe5X6tIxp9xPY9EaDQFgVjmYx6g3Y/M0CqjjLB7rW6Pc1Hn5lOy3m0TuONodblvm+BCHpF4q1NyWn1qUBrwTTXJ8Yl+gS9sKbhMRGFkrpZBAL01CWKMiYVxM7HaPgDVlGeizhdEuXZTlAI8LhiVvIKl0KN5TGqRce0zT8gl6K6S+pQWFR5BKbVHCWaiMCdbKh4AQuyAOwdE7LNpFcy4JwKFhy07Al1BDTRvpiPUFHA07iZ6COBk7iZDXoGfAjam16roiqQd6g2LMeExSeLfQ7AqisRh5a4qI3CDUGm2ZbGDmGu0ToTpQelR4/8AWFUZmlFai7ATcrFNlXw5IzGN9T26wTwJq4eEw3BgmZNbK8JjZn2h0avCVRqPWXXPSVE4DtO5gB1I+jgagW26Cg0/rFXc/RmHd/gQREsYykSUzEd2cIS/KONaUWdbxmaKUpA79LhKuEtOW1NMgjO4Z0Ybwo2dXgESlJGwmrzLKhGxZNRGBqtXID6viy7t+sT79Np0/m/M6fzfmdP5vzOn835nT+b8zp/N+Z0/m/MouaLV5RZWuZrNazp/N+Y8re5++NZScEfiz6wWw6FW1rPZ9Ey/UOU+8RwrggdiE35zSje/4hEYY7dZ6RJfoGgjeJ679MRj1YJ4ODrNV+FWxml1J6bGgxyFY10iu9g3bI+8pr+rtnN1iJxbtBd0u8EaaFWa5iyurZDseJvmYmRSg6kJoh5UzZggCUqE7E1LuBF405orSemxbLNitCmajk1SVSzB3wcw/cnUy1llHFkoblr7D0n1QyYWigiLca07fCE30QEUNWfR1+qLhTVH6JoYIBbziVbwTMu3ekOLVQp4V2mh1sFPGKw8zcqDvCHHqoU8K7RANNUfomeKriKanfC+awlj8Fk7yWi29szoASrs/wAABz19t49ZFGB6DSXcsQEeluJeUozC4uIWyUatDkM9xlAz37j+sdHyEsA6RajQvw277n3+s3M3txHRHAU94+8VuR9+4iS8buhdeFykN5q8qneA5q+G3WJWEpYdATMV22JvLtxVXFjhVFtRdUTi1yjcZR1Hr4nk14OYgydFf1Wy8pTQdHue096fYezR1qz1rmXu0u1QpG4MTbxLylgJiFyizHeWcWDVrmUCxFlRkiqFyLiXgIzQ13Ufx0nrn1fB7Fx/LPSfV2e3jbFyLuY/o08IawouigrVecYmqbmIHbC5m3OCA4hiIIDjLEOEIMlGtJmMV8HU6oQyuAZcoEowbBrSL0qEoFbxPVx90XpMc0f4L+a/3zj+sdJtm8kLSCWTHpeiLfpXjNRlUDdcBBbe4H/frKBaegZXN53Stvr8kmtJHk4lDQ1oTz2gJ56+kJU4cLZ2Yqmuj39mo7F1hbOzHMvoynWq1IqVgyptUcQEDt007PBErEKUHISbBnSsFAR9nLvhtfzGWLtSl7VpAvSivGr8HsXHyUwvbWThvNXziE84hSwnY4cG2YDkixZDuMxDAG8UrqMoY1KFbuxCf6ywvhrAna9EPBzKARbM254+Uek+rs8P8FS0TIcZuVEKxK1g3ZlG8Oom5ArSU18DWOqKKgLkvSGFWF31Vl1z6S+Du4WVTfCUQC6zxAS0hshdnm8ymBdwsqm+EYCDCK60czm1LCuE8L0lXt83/svH9ZVD1CbYSuEOLhyXUNYfXEOIsBO9bTFS8y8+6FBeDmKPQgmvQA+/xmTUh/ly/VI5j5PxP8jtkY3279Y2QXrgtv6kLRi+obwmw7JlfBzMJNMnEfQNizVyzd7wSiykXLb53sXHyUF1LmiCZQO5Dl2YPVpvRBGZkX23V4wHPynfi5oLDuS+H11KshlJkzpvUMUtkdbZI+viR6fJBQFadiUyColjlBBpQLGGWBQBQH8JGNaq7fAAIJ7E+/aABhs76aY/rntyyGoaJKWgYwOoP2l3iS49oXvdZRZkF3X5NSV3Ny/hNQQw+F4TaP2DcBjRQa1B9mJoLFXy8/wPYuPk6hDAYXfEQttFBc1NQaFtF3KkrpgnEroerVO+YiVWZuu++cWkf4xKV5kIOnERJUKwUVj5SpLDyLbU+5DtRxZv3mjT/DbTTFF2OZ1HlK5JXJK4MrgynhidywVD0P69Mn7NzLfhW1OlGqvl3Sck84mj5XK9Kndedr/B9y4/lnpPqmNsCFjNX5JPbo+kSDYpXhcdTH/S1jmQS2zQ4gEEcDH/ADDQnuP5Z6T6u0cWuRtLyJkm08P84+zPSbHhs2/6Gm3FLHft4p97Yd/413xNi/XqvV74ZYVAGAnsXH8s9J9Xw+oyDuaDvmgW1rPbvjrAAgjon/OuzP1k73TxTV+L76vlUH8Wivg9i4/lnpPq+LWKgt7m8L7PJhRC6Pj0j9enzMGWsn7r+J7T+J1Hv3T3H8T2n8T2L8TABbPpn+uel2tIg/HSYU/eTNkPF2CV6j3wpaS75J6/EzgIqtvf32nUe/pBaMBUeafKZm2ubxNPFNb19H3XwqETzYr4iXhGi/y3Tp06dOnTp06dOnTp06dOnTp06dOnToLiBqFbgfIfuGoXNcgfnTr3eaUxDR/iz5SZBLdJ+iRb8KfrU/UJ+vR/y0wuhyP62qUnfJLRdUbU3qcQ4fLWZ5NobNI6noy4/QgWnkn7SpCbAXpdYqXmSC1RHuH7S/DXCNa0uFVeP/nFDHnhXa6LQWKs8YZr79/uf7cmv2TgHL8TqBw5VtPOp8g+MK81/wARGu6sIfVfCofPNBo/rbYhq/wbNMn+WnXv8kNOGiX8hYvjPfun9Y4IWgOxNYnrG5Qrs5dfp2Zd3IxPd2j9Gdnmfr9pEtA9vV1LFcPCWf2x34fX6fDVi8Oj6A+s1FXMfE1eg6TQqANB/YtELqePSP16wILaZvG+7zZr81ns3H9ZVGyeksNo+savNrtXhUemGnY8/RPTPSdivrF9Pbbv+3kD8yGk4JRrAld/5fAUV4kurmmyAKD+BRKx3ZR6I69eFTLuQ+RueA6x5h8sekJlft7v0r7/AAYwYO25dc9OxDggAplgxA60Wn8FCAI6jHDm/wDSfjjpDFNVswN3v4ZW1/l0fg914+P177f1itcfUQZgKNlhnPdPaflPcn5mogTS6Afae7/KJBW6qvui5mrWvQfaUizhq++mi5abMHjUwQKkGFq4pY3T8ZUKnuH7S/Pgp9oOArN2doUOP2cRf05VVOc1jEo2otNjLTAfH+HqAxNPGPnqPK99I9++rsGEeM/I+FRTXQ+6kbPOWyVDPBjPh9If2AT6p5TCoi96iCTxRSxzG3xLdhQHgT2fmVfDr4fyufdKUv2qaycphrUzKj+03Eac5vAmknzyd89v4dmhn291gDB5z8j4VF/By1JYpqWa10h+0b2VqPcNr8fiyT2riMJFUR0HMfRoqQcyryFIz6U2iMZmLk2/2EEeo9Z/WKn91pQOPofD6lGq+X4RgWFPUbCuY0Ma3RavKLmjmqeVC+EM+tXsmeXCCqfS+kTSTLkq4Zh4i1FzoA4mDOnKeiaRXjBBMbz/AIh0DSNLuohKdJra8EEEHdF6QJlldtj+FoEAdPGVEjqseSIgVbN97mo6Ik86K7VwviY6R3dk0ASWI2rXHid8WpNkZ9KlZfUyDOhFiT1osI2AAUhh6QpP1VzQ0xLfRSXyYhXmo7bygWxrGh6S3IZJ7klgTZJwzrjrHh0VtQ6bEflL0Ax06RiDV0LCnwmo6Ik87+R9hd3ehGICYe8GC5Q46AKN3UjpAF0OB84/Qwj5YwtD1bdQb739v6zwDekNH7q+HdFomdop9Iiscy75Z6ReEBsFnw2uvWKB09bKs5ZineBdtoWggbzzEvqdWFqrTkhr8OzE4i2iVZ9VraChttZ1dodfLVky27VphVlygPrLgEZnd/ffHCmw/VOnAwILMNxXrAwyUAxOkCePnLVN35W4Z79x/WLyb1go/ZX8OyEBqanWE05AAq9f+E/7px/WKu5+jPR/hcU5UihxA4QXVs8cSvntzCjVq8E1iuEHF3MESl2PSuZdxNXp4GV7jC3V3Qdk8Uq8m8WLRky2zePGJgY3dfjM0VC9w+HLu36/8Jf3Xj+sddcJYF07FAwafaubmbj/AGv1lcXuNvxNp7Xx2CArZb5pGpxY3Sax5i2anmS1QAtn21+ZvxEFgP8AUKhfagdMnRj5wZDleKYM0gIZEamujzRDN/Q/zPYwzHPbnyn9/wC9JpYJoYntH4ntn4nvn4nvn4ntH4ntH4hhK05rO7+sVeywiFjRI1dTk8Gr6DLjs/IAmekOp932irCi7c8QsgVi3wvqeEoS6rLqVcqZFtauZk5q3LZ5yqNoN4r4GkAagheBbiWYkNzkQSiw1U7nEvcu6B3BaIJDKlWjbzlmG+rRBUrrmTwhJyaHZ5l06uvZq/71M1AtSyPfn2nuz7fDQoUCFWFMXxP6wJGjbU6wYW6DQ8IMCa3dDn3rKGUnQnm2nI8Vz0iLTBLUKA+kQLgFldfOZ/Zecp19t1nt37zl9jvlWXyP5nPJyzrD7qVigPrzd+kRy5d2XSIqAjCFq04hGB6SxfSU5Bpn3jSdUyJDz/2QqW8cb0Y1LTLrvciL3d0ZihsDNV68Eax917wdD5L0Ftz/ADEAIsFk00vaLWlK9wohgjrpzvL/ANrQXmi6nczbA7uhLcdQve/L1upVvEaM1w8E/OD9VzxD/wC6n//aAAwDAQACAAMAAAAQ88888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888888KcU3ZZz20wP34mz/BbU0Q4888888888888888888888888888888888888888888888Of8AzH/P/wDwcw+wx0S99wxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzy+Ori+MiMTzSvS/zS33zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzjTzwyzxwB4awzyzyQzyTzzzjzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzw6CyNyZ7zzzue8C+ZY99zGsTB3zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzDTP/jzjzzzjTbDjDnGTDfPTzhTjjzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzyfNjUlEyDPzxXLfQAASpMkfGf89MDzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzCzzzzwyzTzzzTzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzxjzzzzzzjzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzy88zEf8APPT/APPPPPONPPPJLPPPPPPMMOOdfPPPLc9OP9J8P/PPPPPPPPPPPPPPPPPPJBDPDDDFLJHBPPPPPPPPPPPPPPPPPOuvKAVfPPPL/DTG/BPH/PPPPPPPPPPPPPPPPPPALNAFCIDBGJKPPPPPPPMPMPNNO92NPLM93/PPPPPPKk7Lz/8AzzzzzzzzzzzzzzzzzzzxRxzyxxxDwDxTzzzzwQk+wtzfzzzzzCxudzzzzzzzwwwzzzzzzzzzzzzzzzzzzzzzzzxARhutBYQygxzzzzzzzzzzzzzzzzzyCPxiilzzzzzzzjDDTzzzzzzzzzzzzzzzzzzzzxBTit/QDCHDjxzzzzTzzzzzzzTzzzzzzzzzzzzzzzzyzwzjzzzzzzzzzzzzzzzzzzzzxBDyyhBSS9CATzzzwjjzzzzCxzzzzzzzzzzzzzzzzzxjTzzzzzzzzzzzzzzzzzzzzzzxTijCAyAiwQATzzzzzzyDz7LjTvbTTxizTT/ffjDzzwhNrnzzzzzzzzzzzzzzzzzzzzxRxgzSzySgDwTzzzzzzyjzl6vdCgd/yyt8TDAQ4PfzzzzyzzzzzzzzzzzzzzzzzzzzzxRTxTxThThThRjzzzzzyjxPvfHfNOffzz/iFCzjzgDxjTjzzzzzzzzzzzzzzzzzzzzzxhDRDxTR/wDc0UcI48888o8/9t9/fPPc8w08M8cMoM88s88c888888888888888888888XI8oBtYosIcpX8cY08swAAAAAAAAAAQg08884sc0084888408888888888888888888UYw04c4Y8Q8Y8888sE88888888888888884Q888YQmXzfvowl388888888888888888EoE4IUkUs4Ek88888s888888888888888wM88888/foAUU888888888888888888888UgwokU8QwsUQ88888888888888888888M888888888M88s888888888888888888888EY8crJeQZ0Mw4/Qfo888080w80888w887gQP3+0W38c880888888888888888888888Aosgng3HokoQsMs8EMMvbwXbr7w8cQ0/44ALb0A8cAoiWZ888888888888888888888EcE0FssHPAIU+tYjF88888804w808888/LYUDfQ888888o888888888888888888888U808088U4s0E888888888884QkXU888soc88888888w0Y4888888888888888888888Q040404U4AYU888884w88888888888888Mw88888888888888888888888888888888UU8U8U8U8U8U0888s888888888888888888w8888880w44888888888888888888888Qo0oEcwkUEwo848s88888888888888888888M40888cMMY888888888888888888888U4UooUcU8oUU8s8888887/APPPO+/PO/8AzzzzzzyxDzxzzzzzzzzzzzzzzzzzzzzzzzzxAgxTOgTRc+hjzzzzzzzy8gdBjwaJwqrzzzzzzzzzzwxsqHzzzzzzzzzzzzzzzzzzzzxAjjivgjhsvwDzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzyyyzzzzzzzzzzzzzzzzzzzzzxCzRRT8dfdiATzzzzzzzzzzzzzzzzzzzzzzzzzzzzzxzDTjzzzzzzzzzzzzzzzzzzzzxQxBzgCQggQBDzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzwwyzzzzzzzzzzzzzzzzzzzzzxTyyRzzzSzjxTzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzwRSxSxSxSxSxTzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzxxzxzxzxzxzxxzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz//EAC4RAAECAgkEAgMBAQEBAAAAAAEAESExQVFhcaGxwdHwEIGR4SBQMEDxYIBwkP/aAAgBAwEBPxD/AKpMG76Ji7J3iJM+KB0AscIhiRfgShFu2KEWN+CevkWQuAKfeIFwret0IlPAlARa7Ft0C4BTOHFKDtaq2lDEOueP6jAntiHRhDlG/wBdVYgWIPIoCDdsXQcFGoCMY34xTxe7BtkAwAqfFUNyboFnBSGoQDACr1sqX6FATZh/EBAAp4uE0GCMeVQXPK9YQRjG/FtvsAjB7hmyMIWjEOgYm85qkbSM0WBjW2aixeYne+gzRmO+QTOziIXmPpund1g5ojJfoUBUmELswXmPpunmuxbQoiW3bPRPLlJ+spZP8JoGkfe6GQWlkjKFue0lJCzV+VqY1OfSExY2jqV8AHLIlyGt8SGSoNxRjKrI/wBVJ7ZKRBoAycZFRmmxy3kjPtv6UJpOX8/1OLXNHxfsiSReDlBGyzLdGZAkxzLIfVNFuSdPB0A5ZAuH6CIcKllVbp8DDw65g62dUOjB++CAcAgXVWOVKlkDkDkUTopbkgdegiWVI5L+omBKMPqDS5IDRW0+ydU8BtdAeADwXQMBUHQDRAznIujEk3YBlx3Rm9m/Uz7NmvWAZNBrMi6MfIwDIxJN+ZOqea1/SBu1gyNNpdGIIvxmnmuwbZAzlSBgqbAaIGDijZEyAGAAodGI7ZF1F5f1/wCSyUDgPWM1FFSSE5cInGpsGxdCK0SPBRytBwghA7AKhIoJkfpmBHOQijB3o5ojAkVPg+yAcAicP8QcgJzayESAKSyEZW4TThnsB7FGAL0NiiIsm7YIRLX4IFw/60ulLq1T60N+iYFuoRi708G1yMfL57qJ7ziX53TzWv6QMG+ILFwrkIEEUF1Iah8U0CKwB4Ri9rYJy70u6EC446AYN9KYPZ1MC3xDPFFyX45np8KCU0FbYboFw4o3VLfggJahsWRDEi1sFPeMbkHYx8ugXiQJn6aopfF0TF7d0RAi/HSSie0DLRGfc+I8Ksu19Kkn5GE+gdwRP+bIMAAOcb6YHLInd0eDoiLcl+tMynYIzLWaPqpFT7e05jVDOOCNDW+YMjKHIj39ITF0A3CSMZ15BkYhjU2aMXenYjVGIbkwdEZk8kB98YGw2m6MB4xRpa3B1bayMwOTI+/MXt5ojGaMZ8f9AwezdlSyMAbE0kIh/lS3ORCEecrQLoB0AvUIw5UrPgc2hRiYWaqjzmUXguy+rE0Yg368KhFQ757ogwcmNkCxKooCIWDBkTF+SGyAYdQzxRRdN3520UMVBQEA7G4RQMBtfNA3YwIQMBtxEICSwDwXVJP2LSCst2TuARemixQMATZrsmL1v5ugQUMXIuyCBcAikOniR1InY48PsqETAtZi2hRgSL8yNEYE1A6E6IwDnkQNVSRyv92luph1MHsQDlkC4fv0MC3K/wAbxemJ8poMLk8XtfnlNBuU7oFiKnrZAMhy70/zZMGZUv1MSbzi+hVDIxRjjiqX5Jk3O7ql/wB2k2vi6MmFWsuVoFiDbt7QElgHgujTecQdwmldqoibdkCzr2e6AgFhHkIxfvijF3swbYozPfF90Aw/z0gv0KADggGAr0RiYwyVBN2nta3iKixr9pjFp0Qk9g8sEZnvkfUUJfdAsXQDBv3beoj/AIAxIXZhPLnKVRZV50aNieE24S4EAWClhnFAhlT6DV0LAOpkL9CmcgWc9oRMLMW3a9EwcUg4BGB8ZOjMiw4E7IR/MA5Uz3akYZKjsTmgItW3inZPB6wckDm8NUUJsfPZGD3jEOh0tVn7jEkBTuhEOEwkdsUThyjD40N1l306k5tEQ0bD5j6VI3ZBGbvmQORWdEZN4IyhyI94qQtWMkaWt49kVEIMoaIEkDWNUNLWcy8oU9LOlSERen5d0fqYhrd90Y4a7r3mc6U0fGX7QLBU3JUIKvSiAizD0EAwZcwO/wADQt0KMz31bRUQs19IMypzp/VFg84vh8zB7NnViqtVD/KTeogAq1GxUTtZzVAzWv2ioWezBv6mg1+YzZkYysyPpUm85/ZxPbtujF7WwbZHjsBpFGPduaozGs/8CgOn+ADyTxUB0MA6AdAuHH1LOxZkFbR094IBy12P9Tyt/GEIGFvpGZrEAaFLDx6gnnvyPGUAjVoiIhWMYDfyoybw1iJi9g9lAwqJxBTQizH8hzaFGfYalWX5nJGbXZftPFlmCAAhRwKhkY44zQLF7sG2QDACr6Oz9uJrX0VJvbNGq/AkaRRm74UJ4PyYH+BMZ/8AxO//xAAuEQABAwAJAwQDAAMBAAAAAAABABEhMUFRYaGxwdHwcYGRECBQ4TBA8WBwgJD/2gAIAQIBAT8Q/wCqRIJsTiDUwPlM0Gl2wdGgQ4kicDtiAdUSwPfBAxIsbFNZyHRsRCb0EQxWPvZQCaQOUIlg/XB9kQxIsTt3sEQHC9lUHpnAssox5KEgd8CyEzVGL7fHAM96IcEW6UIku/fyGKIBsE8uaUIYdMA2iaG64vuiXJNrYKt+SGRDuKketEkkm373VTBX85KCQF7d33RSIrTQxoTl3PVCMcS+ar8YKjHEvmhEC7B9/kChLdTgHzQLh7jgWQQ6DJCkCpgckHkLHy0UOGoLt0A1OSFB7ISQB4gqRlTa7JmZecH/AKqToM0S1NCcHFASRlTa7JqHXB9Qnp2AffL0Qz9dAfjHh03sJZEVH3RQpp/Df8bQd8yq7rmQpm3SMaVUew5huWKgLWyT9oyV4OrKl9hMCUAwINw7inPhWYoU25j+KgDvmVT7ouxIpY5hRQocN52pQtW4Rq6mhSzPG6YHN7VsGa9MAehzShff5+lCFRNLjJ2vxYMA8pZNLIlg6IYte3oYLFVA8pZW3Nj7BPlst08ctZbsq2QlmuxRLFYlEN38EKj31VTomBNj4IGQ8PykjT0MB1UXqbF9kA5A5AdCfiG7m5Oqebn0A0pTSFzZbImV4nyAERMKxqTqidq/EEaoCAOuJdcdkKGv29RHl8tk0N1xJKeXFpxDaIR4I8l1AAG7IDRNIXNlOCJ+9iCNUBRcGylCCDcPIoTeA4vuidpETtbk6onO0d90DoJckmtsHzdCCOpxDKHhspw/1LS9EbEBYcFAsqAPcpgxuQsHXPZy+DIk6wBiEFNxGMoyL1kOykOBiUaAf05AnlmcISzV/W6EgG1sW3CJYrEoHEe0mDpjxURgSag6MO9RzoTF2vI7hCSAKwT4QLh1DPijAfpigYt+sQ9KdVMrlR6Xp5dMnf8ANQhIfnN/Uu0IMCGoEcz6oQ3RstlBug8gNzoE0hc33gicj7SAQxVNMoyCDWGVI9bHwqQNhJ8oBmufFABmqZkYMbsETkn4US16eHTISH5Yr/YXaFABA4BRr7Kg5QoFY32IhisHfYqp/wAE2et8HQL9xigjoEdRwIi9px4TMwUINAPw1pU2DbJpC5u8J/IDljSoNcTrmhHgeQR26K/rp98dGoe4TR6FmINH93KLuSadeH4YlkDFvRpZCh7ny3XNf1aBGo6ihQ6/Mtzoqa1t/pMe9DnINjihW/8AEuhJm05taPhAcInhahECzV0ILi18kIZqhkQRkhBflBGqFAHXMn54SLz67IEHHB9lQz3YsrrnQoJ5QDr8+Ia7mqEUIRRdhR+clg6aW5aqnVYv2dPTciGLK72vD85B8IxzlhRDFkSxVEQ1qhPLVf7AW7NQhAm85cxQp8eGH30Qod8z8WDkEae2nAi/UzZbIEOPKCNUDgLRvuiYG/E+4QFDlJ3ROX9S7QgghQzbY5lVGv7+kTI9SOpjLFEOQtDZInsHOII1TQ3DUp6V5xACqA+ReksD9w6aSDa3hCRF2JbVWtfpunDWIPl9kQRwoThh65kIhiQaiyaAfUS17Hy26FOHLkBIe/B9QpAHpkDr9IS1pGZA1QksOQ+iqB5Z+7UD6XIT6iWvRLB0Qxa9tPQSH5S342DNVA8J3Jdc8M2S6co2CIBKoWHh90SShg1j+7lOXflDKpvUQBcBg2oQgoRy1CMMEIHLjouYMqm5b+7U6psGdCC5t0bPJEEkLt/pE5EWk+WZoUjoMCNigYPXQKAuIh2dGWyJmanB8FQbiEIZr8X3CFXbAjZEv/j1J0OYRJYeGQiCrnLkCwiZ78sQEgU/02iGV5j7UEioTlCeCXDVGoLcx5gqnbMfcI/NEOGKJcuf3a29SWTfPiAPXIoiDaaMfpPLrT41eL00xdjB3lEHGpzkGQF9ra6GRgkR60nTUIGu9st0YOb8H2dASxqOIoSOxORCWNpGIG/5yWEJqloxYHHNCnsGSelYMaB5pTULMxEw6DmEExeGAKE+DmyPpW3OSqnV37RTgEVWwOqMFiiIBNj4IGJAtZCeXt7GTy/rT219QcdWiBcgXjxH2qIHXM6rIIIgLBqhA6ChTNuh1bBVHsKUg9Mca/BExEUsc+dUQAYsOiCp78418I1K9UT6VHzojBNyIt46eU3qIL3NkdEIHnFtkKe4yHeEKA65n9ohytbAaKYrVEQb8fsoly/Oaoaag6ewVrtQgzCyI8Pqq5v0++FEF1rDX+Jw7KIbH3iWv3ZXq16mxfZVsr/bS9FAibdNwUWe/X+Igkx0d4VIBfi/8RMujLI4KhBsOJEZqodBl8nFrjqdEI6HxfdYDZk4PHlQa59d2QoCwD/gUlk1fsJApTFlY+gksiWpRDFj8S4Dl+BI0TGivf0Ac8Up4frh/EQxIs/GUZE2j7QoPxDJ1dTkd9i5RFEXZjjqRi3VAwN7dp+vCiB0L9UzsEUO8KkNowEJ5G/DlX5BkOYQo8nIboUveMh3l0K3XM/tM7l+L7okkvXGE5qt+VbIQ3bChEOG64vuiXJNv3v8Hf8Atwe5tU8Do+SavpiAdUJDs8tKpIHXJ/8AAKEIo/8AE7//xAAsEAEAAQMDAgUEAwEBAQAAAAABEQAhMUFRYRBxIIGRofAwULHBQNHhYPGg/9oACAEBAAE/EP8A55LxESBFvaCH24UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUbkVAhkEmp0/5gJZJ25cAgUMprSZAdybpUY8qJqUss8Oo8N+gNbjzJiwOd8dcEtJc8ldikg+U0ov5Mzk/JJRo6kBXBSFte34+iZCeBQKxKE23qQAkp5ByVeRUGFIyhuJ4gSzFGWQCCDePCwLywEi2RvpOGi1eeKtIoPOgZgSIyJ0QRnzGAUojKETPgQRnzGAUojKETPh9t/wCZgjfzuykr/l5RKFiJvHFGkCSYCEoM4v50DHRgpYAwdMio6jHzHErDtjNYtbJJIkicKUYQIZAQn0Wg1iaMApyqtEXiMsWYfmhVmlAIEx1gGn5ArNQIgOGSIiKvipBJsQIaQYzSMPs8iIsE4Upd7cBiB1pS8m0BEU82+dFIZiZXvT8gVmoEQHDJERFNEHhLTtbJIJgjWjJAeMBErq89HAXy4MItou2asVtEQUEzC0M3oofOgETkmZ1puY4SKAAg5nVXyFEDAg3VUSGg86XDpVILSDiYPOtV9ZkcAOIM0GWg6DkRyZjOtPYVohyTkAbZakqck86ilpJxajdwDJAO8pLJtARFCEUeRNWOQHokGIZFojPlmo+YlhGEdZEdin5ArNQIgOGSIiKIZa1NJ0v6awaesULK3wU5YAk2EtJJnWjnRc4Qx4CFiL/pTBNhiCz/AMauZMAzW67fBigUYgrPCEqMXzRGea0kE7KJUqzv09t/5iCcWpGkboCw61AKBKARK6OCr0RhIgB1LY822lRXATZEhWhQurFo1qz/ABBpDAYTm7QfEJtjuWSB/wAUCithVaMBgLhdXFQWdRsQ+dce7ocE3jFveiU4p5iZccp/hMErVIFsmBJNzalbeIeHKyXSYj3qO3LCGI3qJtQD5iEpZgmAuF1W1YXL/FQuKamtCMTESwKkhHSc0rbxDw5WS6TEe9QvMnYSbmjWIqZF5mVISbXNmKsilcSIEti7rV7yhAgiYlT3qWrnDdCbXN2onHF+IAGRgGAlzFWft5gCGgtEVNZOybJiabReoX3g9cWBZApxTE/ytxFpHeAmgQp3ACKzo84rkBkOgJBbShqUSudhJXQ3prQA3a1cMMuUlrUQdsHUKOCY8qW+BhloXZzicUwRyClhtGr7ZrEJd9aZhyZ70rbxDw5WS6TEe9D7QAo8wI0KOoCAcjZTvP7eUGyoQrCoDY/wOyY0qWikGE19CWn385JkcHNCbgo/I2UzZmh7oUBKtwK1cWq/BDxgRJLNzTp7b/1UEI/QFBlAuWJY7/TYFEtMwkU2ggpcq5AMu31/bf8AnYIJiBDmLAAd86U2kdXhiB7pYqIgAMxCSIIMyzIBUGpqFpAQ10ShJ1bHILHuTWD8AhhUSaU1i3NYMEAa0a2meAAgBUNC6CwzbDeASsNyKMUogIkCM+xaoeA4EuggCAkdJvQRjZZEAMOZ2aWC1EO+b2LXps1n1CB4BNmxHSoWXIyS4MoSkmZdqakf5DhcIe6ianNGRsMyBd5BMUy0we2gmLILFxOcXooPo2KStsBrURM4wcCFmYSvdqsCJkRjuhi3FB4yWYs3FjD6VJoE5sAL9rqXWNPUqFnmGZdopqR/kOFwh7qJqc0ZGwzIF3kExTLTB7aCYsgsXE5xerlaLQAlUQI9adhwxQwwQuOiVAZySnbELJiI5imkun+EVipZiUWgyCGSHNm6m3FOSiKVugL8WVz4vbf+dgkTxWSqs7aE80c6Bn5KUigWNYw0ibA4JtShJmtMWgDc5AN2eKIMA5QylCaU4eh4J4vFPnq/ufYgkUhTvP6q3ydhYB5LIy7lSzilw2p7yU7pFSCJUSJMWp8r3RYkOXExO9ulQyIAwqAlbFTwMIkRzGhFUEUI+houJBIAHXaiQenwES5g6pNq92q5xFbGcTnjFRkpQgZm9Yp581LGVznMb6tozNRZ3JWguLutTwMIkRzGhFUEUIM6IQIBqAF4G89qReTqfbRiSQYljNJoAwSIg5umN6cgspJxlvLFrXmgppTCM2cl/OrS4PF7b/zsEDUEIBsjZr2QtVIQ+dAWCTQZChN2mKBAolEpzKExN4qH/dhjEIkp0OiAvlRldXo2ck5YZYCJacromJCBQTA3qH5VtzEIkoaKJJOxjMcTUOM7YOwT5qv5SbkdglI2mZU5zYRQ9Cgq+mwsXqJF4wdwDejhgZDGJxPZikCS4pNMkSIZZI1q0eMgixZiOIq2bEJCYJERTljkN7oFJJDilVVFpTgyV7KJAxYtxX50kb2TNRIvGDuAb0cMDIYxOJ7MUgSXFJpkiRDLJGtWjxkEWLMRxFRY1s52IEgpmwyqLcx7KEIMLu2iT1oMKM3E7iactiKZkZGEiz4/bf8AkKDbrqSjBq0mag1wbUKBYK3TBUOjHAUrMQW3ToBaJPJurYoRJGToQF3h1MRhzK0OKiQzSgSEsG209ZMk7tyYQzQdeLagUbAlxydZMk/IgBQFuBL5UUIhBhHXrkybhUzg9cNEWzx1kySbk45awK6E61KtiKaGGEjZE6SURVgMtTnjJmlS1hEexHLx45MmTJkyWgBFYQbFrCWd/DJkyZKg8/tAExuW8MmTJkpKSTlQCb1cFTP95RZUkCOU+jJkyZMmTJk4Dj01yUBnjT/kDcmuau3oJa2aJELz47ZLYrLk20UqRJHCVIuHBtTdmO2ilBmsJoOCXqi9rUnFOoDAAEza9E1qF7mReE4m/F4yehmTcCyyqlLRTBNazG3IJZRdmpHvvaKZNwOV09QwoKy3iAa3ofo5qBIO4dvBUxVsI6s+z7yrE4bmsT3X59ffegFxIjELSYltOlXZ6GFrIc0rRtQxzhDOCSAkq1R0JobpdvWM5oJjNYiuNN2NDmr48Dr0pEkcNX0wVXpSkkcJQu+ASo3dq/4potuWeSV4c1isImkjDaXm1mkkKLFZdEnw05WVAA0xEjBhbihthJF8L4oXSImoBElQJC4pIGyMa0kVfBJl3wJiXTJyoRIA9Uq5V8jZkDmGs5qNvI6jwllSL2tS2TEyxdK5rA/yCYD8ukSaxxnFHrzV0tiFYRhW3pKCjyeFB6IFNBewrE+90IqJnirGCgEIP9UEniRTCa8nK3zGlDIO/wDyrSohMSdwRMXihyEtXxYXaWRRfNgAohLo0ubBsEsY3BbvRTGEaid28C3TV5bqG5UZEvtUaE3gHgTeCJl5pxurgRCpIg7U8rzANkhCQBTE1HTwExAoEIFAZ/cKq50HnLLPOc0HTI5WiyIEvLF6PIS1fF1ct1ve8bSx7TKNZinhKmsoFG9InodffegXMgwWm64GxrRFCDI0r4hAg0xS0VbpWgw26RF+oAAsYnnZoL6FmkFSZI0pyQUpwiO6SMxTAhzssjpVAsWG2Kfxg8kmCERlIqM2CCyEKQBriiDVbXLEdRJkm1FihSgS8t0byAUatkouAOieKeeqxXJewIiZxURsBE4AuJxV7ihVlyWaukmOgwXpN0Rk5VMQ/wAjZVLJKw9T4cjoyNs1PkYYUg4DumaOLH42Ir84EuCxekhl9gtLQblyjJCWy4A0J0FqYXLLMghtM5pDFGT8SJSgK7U1+IOcEWAmxScMaqkw1v6P/SfA7/B77/APQ41yajVm/b6snMHUDqUDCwuZif8Ak7LVqeKbkDGtRncD2oKFDVBq4mEiURsAZmbRmbU8X4N1IYXQYokCFY7iagKaTQ0ZVAqyCCxc+dAEnbAGUJG+LaVoxvb7SuAcrWOvWVSMSiO4/mia524MjtULooCTQPzocSPGjT9fWWcoSEG6lXfjMJvcsGYbmaGjtHjzIJTYmp+i7CQG6ECL57NW8XRIsrZFmMdihz+NEUohEhoxXwO/rLIEWQkHSSg6qv2cdvauFAEqlQAoVZQnzKGaxhG0IkPeTvarh4CNLoEN9VCe3vNwmFcWlJqcV2TzY1oL3EaM0LQc2LFy6+IuorNE9rAeJJs2KIzJREASFgWGLXvUFFvrxNiFJsKKkUrYABn50YpRARIEZ9i1KgReRGgsNnokNZQnLCTLIY1c3rAP6xCs2MsAlb4ijFKICJAjPsWqHgOBLoIAgJHSb0EY2WRADDmdmlgtRDvm9i16bNZ9QgeATZsR0qFlyMkuDKEpJmXampH+Q4XCHuompzRkbDMgXeQTFMtMHtoJiyCxcTnF6KD6NikrbAa1ETOMHAhZmEoCbDsAErSfhFhsjYnVrMGGhOUFzEgA750ptI6vDED3SxRrKE5YSZZDGrm9GKUQESBGfYtTuEHkWwsNn/jjaVY5SUR51KRYSgOXavND5EosWC8SnrR8PO8MiDf2Tmi0bjFi7yDaD8UaPXDHZQF40IpCgyfuqwRqTAB8mlNNJWwS0crjRQAEtsrWpqhWxM4MyDmiuDxkCgfd86jMoQFsKZbL4o0m1ELZbmjxRt1YInKllTaaQCE4jYDYjIB2a+B3+BEbTwsN+clTs0jAAeh03OHhYx0f7w7CsrwVP6pbBjdsS7AhNb7kvqBiZvE1Fq7RGpFZYv5NEFC7P6lKC6jLFlHEjQMgP8dKEGq1f3PsQSKQp3n9UPAzYXUspSQy79EhY7SJ0guW2KBbXinz1f3PsQSKQp3n9Vb5OwsA8lkZdypZxS4bU95Kd0ipBEqJEmLU+V7osSHLiYne3SoZEAYVAStip4GESI5jQiqCKEfQ0XEgkADrtRIPT4CJcwdUm1GMpgaph704uxmRGHMri2tQJFZLC3bQnmjnQM/JSkUCxrGGiTQDm0SQtnFX9z7EEikKd5/VHgLsL3MpSQy7/wDHRjR50GS5q1iabf5Y1ALzKnz8o4Y2IojeJcptY8kVC1OMccRHmDVulZGIM9FsTV7GtctKFkQ6DFDaK7tFgetTKmkPclVly1jQs8FVuq6utRiGmSlW6VuutTARSh3QJ5NWWVF5EEm6gEyjSl8M5nMyuWbzFAGSEXTMNZlmFQ0HEEHDGMnBUWaAbQQISItelcgmkDCIQktvX+R0bQFo91E+n4VF/wDQO8l8DnSnBRASYyKXLNNHxFM6MjCRZoOhCERZFCYnSroUm5fcTShaiUuMXEV7CL1lEFFzNkMHkEUpfRAXyoLrq0J4YrmIC66utWDP99hAWoflW3MQiSuWpLsRJThtQQODgLABgpUTy6HJLeVPV0TEhAoJgb1D8q25iESUNFEknYxmOJqHGdsHYJ81X8pNyOwSkbTMqc5sIoehQVfTYWL1Ei8YO4BvRwwMhjE4nsxSBJcUmmSJEMska1aPGQRYsxHEVbNiEhMEiIpyxyG90DoGQJMunMwmrsTQCKylsRPFeyFqpCHzomsw1B3nsqG5VtzEIkoaKJJOxjMcT/zIY1SVjeGHYOaL9zrhdwb/AMazdXKX1nzVcDRB7H0IWzhztQk8msyEx5JSYOKGkvlrOV5PM8VJ5mSvZ4ThB/7ZefkFEYUwLI5LNlH7KlJdwr8ir9Y3ho7VP2BalS7AWIJdI0i7gkpaT6B2ug4TKrYP4FSpUqVKlSpUqVKlSpUMScgkSIlkS8/84+pFFiS5OQZO1Y+0wCYcRH8AkpVRhDad5h3FPofG5P8ArPVxuz8KEhcykPuFz0iUWhCQW8SeDhPrFbZDOwO64Ck2KoCptOMMVASBbqyeP43J/wAl6RPodMZEuNPgyRmBK52qXD4wRGRyEiXXNOb5CUCwIa70CrNQgJiwhOaUW59leJun2oZQ3pEJEpI1JJwqQw2L8FOxQ/CFhLiAO9GaoyFwumC01dJ58Xuh9qVPQCZgsAGZm0ZmofJqUFkoxtmkBrNM3BCXdBqU+HJsghCRga99rsP+H0mbgLXpfE7Y60Px9H2z8OjE+lgXdB76TslYoTQ+bE9PLTEVQKTsQDzGjJgSJI/QfC+Th5tK9hZW88DzphqODndBfKgLyhIu0sHCA0K+NyfQ+Nyfx/QIgASrpUnYISMZvIOSSlrxc9MSbckn0rOZDCZBcJ7kn2/5jap2JFgAwuxYKBqICJEMRcqTrAlDJKuQYIMsohzSKdScJDh1ipIlBCiAV7Li42okwMcSMHG1AVPYEH7oXAtsP6lnnQ0K+Mkh9ppdRgMlhGZVE7lEuOMd0g9v3oAtYygMMkEHvQg8e0DKXiai2gILGKa2n0r32tCfVlpgmRcraHFHXUESZwSnYfR9s/DwE0iBke41OzxlZLu3nnWkMx6yWo0dbSnzI9qj3T/YpxHPS3A0f9+VdAWoB733owRYiPr+6ggg6/G5PofG5PA653bnQvd+xT8XYZwD5w96IzJREASFgWGLXvRGZKIgCQsCwxa96TZUtVLtBbgKguqCTKUNg4obziQRIMT7FqVUg+RaBYbP1KnpXQEsj2IWgawGZQu8BHlRohCJMCDlC8ZpDlseCCSSxvbLQiZGR3XIQESTir/5STXaTMjhkgFSQAcc7EDCJKJGGlOAz0PCJgCrOlCZQAJCSTAogEGlF19ZJTCSuSILQ0hwSqGqMGXG9CLaYCpQzCu3DV3puFdkwdw5U8cpMIEgRS2zbWaeMtYwAooiRJOaaESVAklbkJWJlX+zzU1lENTU1OeeUkZJETyqGsb3MsrsySvm09HTuwbicHmKRZ11UBmbZAtihSYbJT3+hFFhMAQAYAqcPpVxSLtzpQR1g234WDBgJofSxvPrmOxTqVSEt7fwVLuVR7cYiimiC8QIAsEhYTFRjkIgIIno5vROZ25IMku8jFYnyLsJGRZZNaA8MLR2VFOGickSLLdW68rU/Q9s/D+D8bk+h8bk6mWBKuAp3QWREghBRsalTG2gtjgpLq1WiChdn9SiChdn9ShELs7MPqFBoqgfmAmr+59iCRSFO8/qh8FnC6llKSGXf6lT0gZhvIJk5M0AXEUizhY3S98NIFULYLILkLGd5Wlt7FMUqFwMGs3ajgsASwGA1bsXagQMjWP5wzUQy0RDK3aHNQ7eOKSlncasVBhSDzlyZZMDU5nQrhxdqTSpt+OsrpkahtNmnCUGYi8tgkpfuqUODeC5M3tkIoQoVHeWl3iMzmlvuSChUJBAbxMeVWtjuYESSzfb7O56OPA48DjrrTjrrTjrrTjoY8ftn4fwfjcnVXZwKAJWCVsYKV/ZsPwIcgmHpRnybEO6RlABJJt1+NydXUGHkDZEclEDSCTbAWKlBFW74lnkpS+iAvlQXXVpS+iAvlQXXVpK/DBXKguurX6YugAS8tQ/KtuYhElKq9euKEpxQ9Cgq+mwsX/h+nquDhMqtgqV/wDFQmGAw3I6ICWWvIQFlSmN/tbmg6PRSHNmfRaMb4PNLRMb/wB9GJSDETtQM49v7KwfP86GQM7H9tDYa02/uqUkY3/0oQkh+WtSFkn5ZoXCeT+6kP1KsfaGekdGjHj9s/D+D8bk6w4AgK2mId6Sp6bBk3EhSk3omJwKbBQAuaRWXAhzAIYFiYWhEkZK+NyeFurY0CLugJTzp9FayU4pizDvRFhloBmJu1WtURQrxGITLWJ6a94tqfvkDg8qf4HpyIMnfuAqCd3FHbqe/shg6EiWaIFTDgGFmCIcia0L6wYWLtwtrxngpJhgLZLAzMkbzTHgPLIQgBBbSKDXng0IM3PxXkystC9jhevU8eXEwTE5gqMiEQXrrMYXGMxQxZDs3FhElzTUz9pc0NumcCblWgartSwMyuTw5Jn/AJrWEmaH6gPepFPP1ghTXerBRSXLTU7wVdCuJfsxQ4SYgkARUmNEzUHYAIIJNwhPalw3+BqeFTTvGSxIxZg7Ui1ag/LSIRHEWHqUDRsdRECgM2MZoiRTBpN8KhEfOLbfGmuDkhWgshyqwudqLISVtEp0MwbIhEI7jU9GjHj9s/DrYJLjlZWDEbdqI4CsvMjLgf6l4qfqNImnpzKu5XRFTy8zLyGyEJua60+FJk38hmoLKDS6EMgG8jW2PeukmKvgeETyUaXkMrJyTiOaGA0jzuJrNLl5akTQyVksHCWemhrsTiZKj4D81HwH5pCEgiEiQ3GSgFGzilS4JdVR8B+aDKYmjDg3xFJZl6T3CHyd6EQL9a5q9SfI8JeEaE2iJnMUAIAAA0qGXUOiS3IhG1A08gy2rdnTOLVeLGWG14WGHekQjSQS9vEGYXG38D0UAMSvW50STHmKrSWmVgPdp7E6CeMEXbRGbVCD0d5wDUiTypojtY3Fs2GWLU6LNhJgTPvQDyJKMC2kgG8kdIDO5AUAwWCYPcpPa2BAAsK7X0dvtLnpg0CY6y8Yk1i0HbmhtWWRCMMZBckhWIC+ls9g1xRYLHovhowpwOjlzRnx50IXB7U4pLeC7SKKvxVs5S8JVipakjCTNmaGHcAPSrUI+AyhwMea0U46GPH7Z+HX5XioBU1MM3tcmiDjTPZT21gKsvpSYykBJJsUGmnWVmzeLa6FLdByquZIEzdxrQVdFMAI1JCTWkJ8KBFIFmF9jajytFgLQqm24UNmJMzyXc9ihzqkbCC3s7iN6nM5YeozacqVO4ZY6gBoFhiA6fG5PFBgyIIwDUYAL7dPjcnhQUBEIwFJoZrEaItxllu4edf+qqwWNE6VGYmVaPZYmgSoGSgEbJGJ86AjII7lWZcrb0/gepkDGiuQRkLuurQKqZM2ERbMQb0GJ4LK1gJcGXSjgJg380mhZgQAgCk6OMlslljzR8kEIKc2EXlpnjCAYZLEMN70i0QDXAiMMIMRgq/lJuR2CVezs3I7APtLno5+T/JNQzn1Ar30kOi7KPuQSAAgOjhbHvH7owXHQsHBz8t6MENg/josPLbqKNKblNLWGdQZeUPOm64ntQIu50fdclFOOhjx+2fh1kPVJxjJgtpSidaVmSwl8y1lkxULJrnkaYw4CrGG/LN1Iy0Ux5DVhS3pDGaUjIhlGxdREtgsRR3/AKdRojIAi6ERSjAgqDkgsotM/qEl0o3Uykg9pNHWrW/Jz0wydiQVqw2AyIqxtajOtBAIJE7g1MWccCEAVng6fG5PofG5OgcQyGmkyxka9tO9iKXt4GuhyRgM1CUBkCwdxbFZoMLqEAGVaMCIglcRLJ/wXpz0/wDHGoWUADTFJNhQgcUS6jf5tfM/3Q8FmIoB1BBJaztV5Ahi/wDZTDxS0HUmNhFIlkESTZpgORELNu9TWY1YfzSUC5mUYpZIJnFJigOFu+9QUwkwJ+6xYEC2iZxElE7cmSH90FMQSsg3zSuMdCYAk4hmnigLMBig5iVmIA98lezmgk046GPH7Z+H8H43J9D43J0mbtdguCUE0CNKSDKSQjN+dKTxXp3MUJdbELBdipkkqACF4SXcxNN2oB53UDjStDtJrY3I1wLhqDIGzpEgJhppSN2JoEXVomUakl5aekgcU2Eh/iWIgJZbsZqxhY8ROQF1n9UdDYnkpBLrZCwXYpsA6xCLwLE5j7/6c0NcEPVPuh+ys5rgKigYaapknRNlWn3yZoFxidAGioMaNWA4STmxTEbiLGImPlNDjxhYcjolCK2qLgoc0qQKjvQWjgmKLCs2IjmKuVf6pwkQiUbCKYboViuEI3hYrL+YgISUSibmZAKGQmmxgQC2iJRCmTMXfanNXEAwkNwkzkoMCIRg4Iira+xk7kKYy4yFJUFtHQtGs0Y8ftn4fwfjcn0PjcnS5HLjkiEo2HGaFAkJR7wFOY26pX4QiYvFYjKhUiXFBkoPL9GUFwY3W+23AcKslzERDBLa1NOyZQwlWMlr4xRNCvH4XNRqU7UMrVyiRJgCBpsgHwWEbkSYbaU5htAEJJvtaM0SSZalsCJi8fX9XxU1BOJcrxQWwmklV0TKCRQP/CoFwvYojzTCPK3YBKXJUd/tTnpzF6hn7riz8fq46NlRg0ZBgoSx04CAK06xWWNyhUissX8moje7gYCOCOlQb65KsJIb4ZmKtY2VxuEIhbaZ0pF/hyM8HkY3oweoSxRRxI05Z6prTBcgKYmVXdAPhtAYBASsAcqDzpqvCEi6L9oox4/bPw/g/G5PofG5P5npug8lZk0ilPk+1MHzfSpvj+1KdLDVryxMQSxrPf7U5qKnG69SH7rgQvZ0jpCeqKjMkqzc6NiBIEaxBCIKKnbIYPIIr2lfrCklLXOJS4xcRTNKCqdxCJoGmiiBggk8qJ4MdzEBddWpgIS7+YTQQMhBKcyhMTeKBAcSiU5lCYm8UkdIqPJunBO8QTxNBrYlcEInUt9CxSopRcA3goCpHpEJE/gBFb2rDg830n6HxuT+Z6sXxjx/DbfajnpM9z9ToQMRH4Tq4oOKasWN0ZneoFEgdiGU+VPcUO6lBWBEuCliVxCd4tONN6evkDg8qa9nT8wKLQmQcWCWYJfvJxSJbRkzMjPkq5rvssCJpmvAWXC5i+lTiQddoDZthpx4HFGdFa8qGPoS09cgbvqUNgJAOQ7F5CZHZNRufWD1R8nDd5cGqVKpaMkkJrKKSWChMq+P43J/M9fE7eM/O0fanNDUS/1KuBC9ugJHywR3ZAe7oNTsxHcev9KdgBUPbrPZh4q75tig0GikAAakhbWg6A6NCcOWLr+9uwnqkIImSMaVE768wgC3AFgpfiglmgoHY2pLUAKhWHsl91+aZcwdkGIJIhEUzvCUkSXDNQmoMRAyi6zd3qLN1vnRjuxUFscg+SegpwdMmHgjce9TTipN/wCH/VGPopwYDZjEbhwRWOX4V3SnMPFDgNXG/evJUOVcHbzPobEFAPq1mFcP790O6mtFk5DkweU9qWMM99yHzG30fjcn830Q2Jmtq5gbJs3riqK2ILK4PCVj+J9qOekRzYL6n6qFtkgioNRGjJFfIUL6GaR3JlX3pLFyGRnludkcxihGlul5QWeQfMTii9OIuGLSuqJILjXcojtRN1o7M0jtgw6zJTW8zSVn2ihaoAJiJyt2luCYvOIGfnTOt5yAySQqrN+1S+jImDZBpdpahZH694CXbXKQds2FLyAGIAsc1rQZaKBYGy3AmSUs0FwmcpT+U81oKTJgIfeFfIKdgg7Ae8PtkoTkCYdOKcUJs7D560Y+mkkOKfPWZ96fuqHk0w+msFRp0yEmuoUR1qZQSOWlcFzV0Icp9X9K0t6lffXCMu6J5lSbHJj7wl836iC1FksiOSvg/wCq+D/qvg/6oKq5+CO4qTKNFbpbZSKPg/6q8HQdgIMaAHlXwf8AVfB/1Xwf9V8H/VfB/wBV8H/VfB/1Xwf9UD+oAIgAMAafUxp/8q+T4r4TZU1aIonKimxLNW8MoQYeks3uQ0qhjKDASkIpMRTXgHFCFA2Iq2VC1XyL0RO2F0RGftTnoyWAJMYGNpL8UYUxOYRY3JiYb1afbSC0DanVgkylXvDENbKNKsJEjedqgUjAIgaO6JuQ60HSZtablyUuWqKHdqLiU4HRYNv7nWC6A3RrKXLuH5oK3Odx/VDFjjdf1QQDVMjYDeLE0ZXecWke1G8gU6Vl58qudAQhlsnyioIkBIhplxCUReyRHsDK0RXVMKRENpn0ox9bNngHjDwqtLyISt8nlkPJ8DRDINFMsaEkyg2oLLSL6GzaNz92Mlsso771RTeJg2LLPGu1dl7KSC/LV3GW05lKSRwlS3FKQ7CvkUIyAqNGBFAKC32xRCdQ4AwhCZHVeApIpAcNEEk0gaLSpai0hg9KHT460KB7tBIovIOETJ4Mm7Mf8FWjEmhXRHmo+t1XLZC2ZaLTC3xfFRKCTzBJTuXPKiHW8gZVlsNmF2oIyPVCOSBhYgu1TLsYiEi4EREzadasYxCMqWMHLBX5lVczHmipxm/ZBZJEezVv32hAqwWLtFDLEmQBBFktkc1EG/NsEwE8QZocFSEgJFcL4UTWp5sTiG2QptA1KEEFuWEr0qKKICrYAPM8Xwm1ayBKtWDAt8iUPjSMBDC4vb/ZjxAhZoYuky2oCBINjZcJRByx2pG7W5LdJhql0qG8cTMAYqDzregvtTno46Dao22st2JXemrrouDWQ/eGlreMqItSlk+VMiG5dDrlY7VHeiEJrrgE8muaim+a4npU+fQqQhh7V/5av/E1Pn0dHYNtJrIRiUWaS7zLIIjXIC46iU6x5JVMWB0ZJTSdoqX4DaYl0JpwcIFqSlwAmLba1fmZLBc1xQAAAWAox9adBF0qr3DLGtSOAEM7jMuiPTwe7Usz2Ckcy5XeLUYYgAbMAGpPfz3JQgKCp2vigxvyAhWkEtmCi1ObgXJjC16I8qaurV8Rt0MlRpJJgIPk0188DEsu8KVPnuSRA96l3aQ5jYGXTN6gS7knSBQbDGPAcCgSIYJTF31pzZCtEiNhNzo/M2GAFWphxiQkmM6M70z/AJhCoJEg6m9AHQgXgJfIDyog6IC8BL5AeVICdwPRQT0onQbXEpDtbTO4yFjEFExzTkngRiEzZoX6JPaafKcUcUwDCove760A4IiLWCPKs2xJGCpWpml1lboJGPZJnTxfDbeP53Z9qc9HHW3JJ2PEIw7/AOVbOhlcfJ7xVhgweu+3l7YoIOjjrrTjqgiJGyUzL0o6uYyI4UZtTkraPeQnzq/lXjsCx7Fa046GPrrPldngEg4SKK+HBKi3ANdqTECKmkipUtCJgrk/4/qSDkRSOxQvdjmMoZ4KknVAYkSQECwspSYnWKOIgJgLRHnQERIkJVmlmyUsWx7zRwg5YEJ1mDSKU8/MG6REzPMcU0arAYYImd5WpS7SfnQKQ6glbFNsH7efGokn2AqSFEuWxrS3BU5gIvzS1Hak4wFKiyQlG97IsSsoBq6UHd0yhKygGrpRkVegzMygE3aU96pdIC6AWAMUGs2UgyiCx1LGrdibM5j+Sab5asUAExF7UZJpB3RjJO0UwJJdWssDaR86BAEIJiLqJsm1BRXQSSDI23pABbh+UwicI0W60fzAYAOAPF8Nt4xPx7ftTn6z4fTq36GPrrPldnUStKBIkhVtuHhP/PBQTGAVumKA04i8hmk7viNzaAk4AZmZ48+h/wCeCgmMArdMUICYST6il3aMFsTFl57kVgb3YNTCd1zoa05QYlAzMwXsZKwN7sGphO6547oNlIDzqARqZyQo2eOqs/KPGZ+Rb9qamnHWacdZpx1mnrNPWaehimMCQvy2Jh0cOj9ZZ8rs6sOxMSXo8SjWS5eyS2twpNKCcQNzhvA6UwV5gQ2JfIofop2SumgQay+VT00HkBEYlhLOEnNEAAt8q5ngbVcyYBmt12+DFAoxBzPCEqRfNScqwsCTCzLJW86UQoCpiQX80K0Wm4iG8DShQFvW0SZEoyTqBrSMtHD5QS8Ble9MgBm8iCyWkNGgivomSwwQdjWkYYjVssCO54lLnR4Q0lAS5c5sUnmdwDBXMU4EppCSMuYIRGbaVE1J+Al6oEnSgiIHSy2GFDamUlICuQoNrYkd6X9uaAUh0YInmi5HCekoGd9KMMbib0R3acbaaAUh0YInmi3ZlxvAwGdabCWBGjBdCzGsE0VogU3chxJt1hpNCByzZYnNlblIgU9dmurgfoaJ/CDK6p1VuvV8EuBEGiEp6rYsW91qtmiToKJlzMrt9qc9HHgceBx4HHgceB6CJanxRpWRudzth1GsDipXku0n31jP/IJ1OE1Mn1FnyuzrIztdjphkgFmKE0ZJ7Mic00jLSw7H2gp1QzTOTHWiBIYs5F/BWoXUs66NovESZoAWuIWwiZcDoL0iZfYii0g9iWhNwUbkbKZszQ90KAlW4FauLVOnCxsBk1azFXKgeMCJJZuaVjYo7mLakWjvSV9kxGBtlBchEsFOoKksxHKA7IWeKCes44UxHIIvrRxblvzI/VKRMx3oh90K0ihyqmwCc+JS48iiAIZluJImherMfx0wQLEEFvSh9JjK+YNf9pMqoznAN7XNGxhnUyXCMpG9NCIhYhZSpVVTSC1SP3WmBaIXsic5qQ+wT4KwJqEzU5cEHsCSnlqR860wLRC9kTnNCwAwxQkABUFiaKpG9QF6IiznypJRYFZvJERHPlSS+DgGVXBWRhlYze33ewuKbt40a4bQRBgCS81pIRuT8LEHgsgpQzsDk9Hmmb9KingQILIrKPpwCA5gwu6v2qLaiBwmSy9o7UCIAEq6UnJZkX8jNYazoXdbUhKGGUNpSVeBeVG0maXeygjIWfMcclTaqAwFiMDVvR9hlGdhFLCwLnCCYvpvSMNYQ89r59uklAZEC5izOhSei4ohvt9/gGEwhLcAMp5p8T3NrIIEna1CjpkmJhWy9qUH+MqirBIbaz2o3WLY2SFYW0aVcDEe3ZmntKUUJpUEOPOmymkYO0pq8rvssCJpmvAWXcMX03qfDLrtAbNsPXHsYHZexy2aJRldYUq5N3xboKgBBRImv0lnyuz+OqUx3wguSjcoiPMAyRiEiZ84GoQc/vAGJ2LfUQCqCU+eLhQGfDGQ0ySOV20fePleKM7myGZRPMBQPWqkDAlkaINbGVtyrMG9BWCoGYSkxNShgzIUCzuTqToKIR2orKS5LFqMRNDAaAKTCaGAgtMAGKOVXMytB4fzRmI8kQLqVm7rSkO5ScG8QoQykzf0oezY6FsoAB84+e3Uhg2/PSwylA4/Vzzi2Kd43mKZL3zRXWamB0MXhw8NA6hqfSHGS7y3o6fFXQCjZiVJ1vQlqAOIWFpj8tIuQOyDEEkQiKZXlKaJLhmojUGIoMrKzd38BlgQokSkEiTIfJ3Xm5KZiBSHDKNjsyah401EUs/+1Lw0BUuAJoAJBRtWOa+Xfuvl37r5d+6+Xfuvl37r5d+6+Xfuvl37r5d+6+Xfuvl37r5d+6+Xfuvl37r5d+6+Xfuvl37r5d+6+Xfuvl37r5d+6G04vGyLUqYcK34Ccp6lQpTjS0WWSV6CiOSJZDiYbfSYAee7E0HKBqlZZbDY9ihfJNEKChEPBwH3mXzqH3RqXvINrGs1aQsJFkGdxpdDJBwkCnmVK18MwISI8EpOYgAxCYmc3akXvDcUOxJsyWp5cOMIJsS+o09KeCAhSF9oindoNyAlktpilbKb0jpCF0DGKd7PESIXRMm1FgNqDSaZAwQCTmVqaNLc0wIAKjHMVArAl84RS0WVwmwFqWmizicu158YtSsT7gSYJDJG0PNGkZMKwkWec0aI1tIEIIWJDCUDC9ggIEImfPyoTR5As3AiZnnypIUH5IFktpigiaKEnNgJMAKsB4mjUN5CYTZNEuVnEdMDzW7IvPFNyTwo7Z4V3L6eFANOrM2cV8E/VfBP1XwT9V8E/VfBP1XwT9V8E/VfBP1XwT9V8E/VfBP1XwT9V8E/VfBP1XwT9V8E/VfBP1XwT9V8E/VfBP1XwT9V8E/VfBP1XwT9UoQxfDSgSHMFg3Yu1kb3HLtfQKkULSVwG66BdrH0SyPNYczeOaPIFkm+PKu7bTwEWZWcGUkT0qDWcWSwiWSkgzEElgUpidepHBkAHK4r/wAcvwM9VL8MEcqGyanhZvoOHdWwUOqWKAkozZF5Ps7no48DjwOOutOOutOOutOOhj6BFDx2IAybqVqNZpDDY+KX1TcKAhEng4SpJCSW8dPldn2FcZYEqYApBIkSDyd15OCiYktDlkGx2JdV8QnIRtDiDFNqkQoMBLHBRJ7n7IYO8AABdzFT6k7M9OyyuHvWoQPVCNtm0Etw4Kc3KHZlITrcak+fhsjfRM/7VhaDQsxEl4hpeBJHEQiF9belLXs8kMkpiN5GkJsAlCL7YJVdSzV207MoLbkl9L5rA5FgV12hvijiYYnFi6rOSmX0PXcLYbYSZN6TcsJQGSt26C8JLQgDKvMoiVglgim8lTEOVqzGpx5JCrS1CDLlpZqUoAwZhRFsyfukRaubdFY4bM/Y3NGOjRg2lEfepSd4IZ84T5UKGE3k/dBsKNf9qHyPw3qMnQL5PWkGS8/3Uggi7Vj5DnHRrmGZ9DFWJQdv8qE39v8AOrVzrF2SoDBapvdll47QA82pm5h6tGPpIZRfx3mDsUDuyyIN6MKpN7huJrVUDTqF+nUr5XZ9gXZ9jA7r2OG7QaMrCAKuRu+bdQUAAAIA0+h7z+Ohvs1WZuOsFkgiSxmyXojxDwzkE0Yi1EYPUgxJ6v8AJg+NDZtkxA1lq1uzkAJRos3q/wCaTdgngWuWl4asTdEiEIbIxm5FRjS5VQTrSSxqFNtdlERA8ATsWoFzQikLBiclPf2ezKShBiZvXwu2ia8ZbZMV0Jli8DUdrJChJQmRj+mnzUOks3I2gJqws/WiIMBDWO1e2+xuammxWopbb1YwLTUmnsjybiGMXt3zQsE2tI3CQO8dovQQLyxuaKOzRnOECrF2IB2CKdS0Yn9hVlxuyS5IhB4mo4LgCChg0ebTFTJi2HybZCBOJiCgzM7q6AE2qufapODQAlKA73xExpR1wPF4slQjDE4D0sKO65b5QGJYnlRCbBK9YrBHDQO7o1lEy7kPnU02pZox9IGSqWyEJ6VJGmqJPaKiBXlNhUb7ODxJXyuz+cuPFWhZGx3e+DVKyGvCvJd5PtrGP2ATq8rq5fqIaAFcSkU2ApS5tFBw7dFF2ykB50iwi8/2182/dfJv3Xzb91L8r3oXC/Hehb1gQfM+1OehKMASrpTCS9XII7EpLs71D1C4bJgnUa6LGs0BKWwtfloATQdJzLEj486MRP8A5VpRi7MD1ZRSWy0RuVQ6nQ864E9xSCdhY9KCYiSxLh9nkUU46GPq/K7P5i4q8Sf5hrPTzb+7Y8jsUcfj1Qt42EBoH8GM0SW4JVNXoNSyHelT9VP+JUtUaExRadwrKWU3G8/anPRS2Ga2hVYGMjgBHm5bkmtW6OeN95/dCAcdII2Piu9RiiIFqaFSYJU5dDJTiiRun7f49Sc2hvf/AFQn4APSvI4bBM/nPRx0MfV+V2fy5CS8e5jPYd0zRmZzJP0+++5fwx8sUOFtJr4z+q+U/qvgP6r5z+q+U/qvgP6ptclinbKD7U5qKhfUUDSaCkJdBMG831qLpefbbMbByjBZsTaS+anJuODFwXMXjWk50tqSqaxukESQt2XJOtAFWC08W4VGkK7AmkYk/sCaYXAtMTrTEoASAlWdlH2gOWKXBYZ53p+2Pits2nMExM1DJZLTlqRlRIqeLUfA4MQUsmYmH1piIjhuUwsRgMyygIkzxQVlipiUR5o71nfhoAkZKMfV+V2fb1zkdvw+P5bZ9qc1NE9FnvVY3B9vWKXyNdD0EDqon4qUxwjINlgWWLWq4VgWhId2CfOj5XG+koGd9KBPhIGjBTlly0GDYYxSBZYu09sXaxmuadVMEBTEJYWvSf8AejymawIY/qsLjCkAAYgkzlW9PuImQEl1YDojKjoJbR+TK1FxCXZjR3+LRZaL+T3V1oxQYAIUcSNjgqfM5k8ABdVtFBEX6KIgmWkCmyXdsLvAarBUTj41vSSjyGkkSIkFAKFDVCnlWjfpZGLFjuU+LFNhdGsjSJirc4bTykJTYmj1pYRIQgiFv+6Ugm1kibA6KDp8rs/mrrLOMTNYIzmaYmygkiDdCL70fRTBMRETiyxZxR7D7kulXesxI0dscCImAso3isbXAgEkpmy8RQYsRCQWCVhb0KDnVDDgbmzamFU0KYDBzRy8Cq7AsN285zQb7Il6C7dQvEq6UiAUbYMQIqkuBvUv2FmSJAJPM1y3JRhISmxNX4rBRAsg3EdPB8Jt41C8fs+1OejAZfXQ/dcRD7erin5rA+WkG3Nd6RDLHuSIIxG9PBmEWG0EhNmSkgvcANwcq22akLsE+CsCahM0rljQMwLDsKVdZtMKlBkVzsUaOG+iStlYaEUgEok4glQxhpRYzTNgbhbrG9K96otQQoOppQ2LWlzaKDh28Ahy/wAAC8DLypiqBuRZbenlRivleKKDLsqFDPEpUO20pXQ5WFtSmEWbJZA7pRIT+VuGULC6LrimMmJQECqStszLQJAgCZ5rK3mg8omGFyfJHpRgIZDDfThoBABDjSj21fK7KiP1FTmCVYulCFNAmvlQQERG4mvRQMxBBsClMTr0TAy5f0TlBJCM9HKuDhMqtgoK2DSFxEydCODIAOVxX/jl+Bnq5WwYlJADMjfws30HDurYKHVLFASUZsi8niXTvsJstpHJd8qyrU1eHh6m01cPr9CSe5D51at25FAIAABoUbQB2DmcsJ5VHJvMghu4EY2aROTNiDasBeZwTTkzMtPQyGbkx5UFQRstY3GGvwhU7NlKmU3rQ5QrPaiJhOOwRAZJ8DsbUA+2XFlDJZb6QcU21LQAMwQG+o0LRZXk4EVG3AJRuOIqTqUi8cGau3xhJALcNXSkodG2wSJZv9qc0RUrNR6g/dcXB7Olug1iVGAN3ombH8pwNYSxc6PRGYEqsAUPYpKvosLN6eluj0tU0ZsGTZNkYR3CkjJCQ70adJXd1ZSsBC+1bHMRiL0FKnKFe7R5AovBwTHeCFdmtfxgFslU4mhgGgT3Kol9AoOzE0gOFXZORmmdoymjXybstCn2PK3I800WmqWBUMhzfnWnjRR2UzBvCFrd6KmPb+8vupiQmUeHQtTwJHrJsI7zUQWTEFgYRthfSng7JTAxwjN96PkcYBJyHQAyuSiKDYv8rTRHnfzx878UlNxcyc0k8NntCxY1ZqfKUwpwODCNW9SiqCUyFwvbm1Asgq5ACfmpPn4bI30TP+1YWg0LMRJeIaXgSRxEIhfW3pS17PJDJKYjeRoqMu8YgGVJdQAaFCFP67LgdZmD0rA5FgV12hvijiYYnFi6rOSmX0PXcLYbYSZN6TcsJQGSt26C8JLQgDKvMoiVglgimu4F0OVqzGpx5G79NBJnRtqrTyvviJe3hNHHRtbA8yQ0edBZ1KQWIBF7jXLUCVh5FSQLk7ROs0vSjlUJcXIa0uRNapIyLkqw2ckUYRFM71qTNFQixwioPPOLySUHsoradOZSyezJxXLURsJyAIsAF3Aahuw4iwrYjeaepLgpGLCLIajUUSjUqUwvdJopwQvDsvVNDOGDo+Na5ahcYRcZYIfJIatfRCWu6/oqJdAZZYVcaQpZh1AxH4pF3WtmAS0dPwQgRZWGgv8AJOassFvImgQMX70eJxCUagokmav+B2UkNEkLYaCiuGDYFj7U5qKtLKPqNBA5B9uk3pbUDYEIkibU2i2GpZFDDtRVh1MCYbFLYmmgSt2cSSgXQZBJWlZRhFqETZCb2inxIPGJ1zOAKQJMKihF5jmJpmQxbC5BjWdcdtRkN9ySwmwTNSI14RZUqMXmaL3SosQAthdW1yCnHWKcUTUPxUM9GlCYIMOwfQTZs2bNmTadQpmCd64rCHLYnG3TMBAMUyJsErTMHNQ9/M/ZVBqGIMsSoyu/SOfUEICwZGFS6y+ANYNjbaiViXELmgCsGrNrUQNKsZyABSRE6SVbUxczokEwPyTpBYOaBlul4S09FJKOCuXEAgwC189tpCbOJYWRKW8TwUXox0GIELjruniYPjQ2bZMQNZatbs5ACUaLN6v+aTdgngWuWl4aPxGRDyAbhkm1moazL/hSRcmm2uyiIgeAJ2LUC5oRSFgxOSnv7PZlJQgxM3r4XbRNeMtsmK6EyxeBqGN8hQJUJkY/ppgKRXhykQd7+1W7+IgTCkBYmD+ui6BPI591bBQnRJQ7cSUs6RV2+MJIBbhq6UKTOJLqTE3xnmn75A4PKmstcUu0RNHrGEeqQNSLUoTDtVCVGTidKyC6f3QwVD2IODAEICcGdaUMh2qhKjJxOlMCKA07qaWCzN2AWIamSiOBCAbiZ8CkjC9ZCLkTvfat7tjn3jL3r4TalDnArphQHdP7qUoDNWcRO9JIquXmYI4uUt7xwqjYIghBSl4Gl0hOJa8BNd0jG1E3WjszXzuz7U5qauh79ULNgntQBWwErtS0gXYI9wnuY2KQspGsA9LKlC/2wzJwjtrQMBFBO7To1mnzkTQLzgi9D/BsNwmrWJEyrYinpdZ87yAmJtMaVOpTJsbIwus2oxmkGmiHVYefakOOBpGQAJUdkvUJSigaJMKstgf6Ky/9yicR4mBuC/sOah2erney9GoliuJhzuezxU04pFulneJ/ujFTRaMHAoDClLs2CiS6CXYUwE1S81ca9rqRkTIDKi5HCekoGd9KSpw2M4CSnVprFQzZRW8TEFKmJGLLMiLK2lVq7ajqRTWIWLITwtPldn8xd8RtSyEEyKu/pnnFqAmQmEkchQUc05zrjFIRVkxz3pEI0kEvbxBmFxtT/mRUHABwNHdASyGSHBgNAoV8W2BJVmA1oNlE8JcUPVRn4ySCGXWjbLZMBJVmAm9RyTZLCILMLng2o1ShOKGA4FVYzQLF0QmIDi74vltvGZ+fZ9qc9BewXsqaQTobJarccqG4F6pQgq8t5QA7qFLIeQ0OIzOYLximkCZskA2dRER2SdSp5KFrOSdgwNgDo466046i3OkIYJcK41Bq9hobBjd0Df2aZprdILhSemjhIJYHIGyf5UK9tnYw+404oa6X8RRipGYYIOQMhe1/zQdsyvYEW5oxTqhAwbILRi7ML5SH2CfBWBNQmahxqQMiNW+olMPHLYhDt4Jy3pUZCyTLKDjZTMIzijgsMTLGzTYClLlrKDh28Hyuz6MkxdJlaM4jXSpdQRDSwxTeab0cnSWIUl0JeKPVmagTITq2qAKNFCKQhMamlKPWP4sRYzYIC9AvIZD7gMk8RNHx6Qc3jIcxRNCQAKABdbUkNU+mu+I2px/VrIqMlzkYLYo5kNLUDK0BszSrEhscg2TagIyCO5VmXK29KjfCJUi8JetRDFXBAlk1VjDFCfNLsAIwqMTbep0s1NsqzEuWaitImllUSzdqILyHYAZhUYm29Q6SrJwK3Yla9QyXDqZiM27VvgTr5uZiM27eL4TbxifkW/anPQxMoe8iOiII7lBB2gB2EMwWm3aoD2vGYTqKATvQPneQNS8JJJ0maI+EYTgIy9y3MVe+lyiAnmBeV0oyrgSRUXEsLQr5NRXC4ZRKyhuFdagQfgvVMlS+P6Nb0/CUAk+T/ZQhZY2pY7B6aUqEq3AiI71GeShgQhOhJC4JvasKcLkMAZPH4oCAbZkTePekxSqlJJTDK2pIE2RDolWxzTKBiJHDLVtM88UY+r8rs+iwSHGWLUo2vtQzIwW0oB6V6JCtEyYT3hTzoFjUSQn5NaBiEQ1IhcrBTbnAAyKPaUB1JrMPzegiCwBpVik6oaLBkGHOtIcqILikh3g9D6LjXtQASrTouaAZhMlM10HC6I2SggcHAWADB/CBtqiFGkt6g+N718q/dfKv306fBv3Xwb90NruN0GJhY+1OejjoqxEySTzhBoityCEa+wuqZG1ApdEwMJvNH8DBLax7AbZmDWlom8u7r2lgNqtUdbUnVk+gUkvK76pw8LSa5YvdFXXegiddg8wpDiQMjZQwhcyWLRmd/JM5lcrK96cdDH1fldn0bY8c5muluXfQrhP9F4AE96EEeQLNwImZ58qm7PdnvKRE4StK1WOgLIA2AKLgUEBKEgCCyMaUSUrRZiYgbQYvF70Qf6WVkIBLtNGliQpEgAlt1+lflVOE0MRNrgzdm4sFTk32wXg4Nf4ahDr4SLDBEM4p/wBVT/mV/wCRX/nUanpUL/VTDAUqYQkyy6fanPRx1UqUoR704aJmHsJijWwYl3jPVx11px4I1EQCPmC9mStUNhOy1R51fpEpBLdcr3rWnHQx9VTD8R/MXHiiHg2Rs1mE8rkbNKeaaCKifeYaburkK0f+Cc1H8J8/CY+mGWkksu7V5HnNXLvnE0Jbb3yNUIQAQh2fzl099yLjGTs1jCtKHwwHmPJmiaQsnIyJkTUbn/AOejjwOPA48DjwOPA9DH0UYAYG0XIHLCsqV10G0Y+RhuqNzS7BkM2pXLLfWg7YjwLABgr5XZ9gXN4GCyJMCeQDGiZoaTLA15gyrzexRYWFEibj9+c9HHgceBx4HHgceB6GMR489cCO9kDuOJrXK1gjayux72gItmOF1Xdd274Pldn2FcgEQRsjTAZYdVrAu3e3VoUZMHLcXo2Go+o6KGETG6tgpBtHyKJ/0aoH6df/ABtf/DU3o+2kxVUDAMwN42YftTmjHRojsyIXm0hWfASfqE+VLDCbzlAsKNWs1QqjTeIsL0zidgUkAnZ/qoXMIytj2rfEMz6GKnLnx/lQu5t/lUpj+W1D6VYhKQ/pSVDoQA82pm/Vox4bD1wCXKnmB2Gtc7cBtY7QPesZJBid7a8+Kenw+AhJIvl/Ls2bNmzZs2bNmzZs2bNmzZs2bNmzZs2VFDxjMguLbfQw/dIPrrzXojhvkehxVqZphHLc4cOi/SFAElATmlKwCFO9S9YpQQY8upNMeGnBnBeY7/anNTTYreymQx5Sk0nHS0zmAmGObd80smO9jcAw7h6Vd9pdpaLIYdKLoFAhYugAeVKyfv8AlOrYleFLkiEHiY9aiAeBBQwXB3WmMocj3DoTsgQTiYg7UKZ3dQIFzVVP4owr0mBKB3vhJjSilzOljaxpjQYXEltrCiLYbjoTCqDyauzSDO2KwRw0rJslZRJT3AfOpptSzRjqsBYio+RO0s7DWpfq0bWPTdxrDYVQ8j7bmmZFHDc5MOo1hGcG+B6HNYVukH/ePoSfIx4/htvtRz0YqsAStKBO5ADukk8NWA5hWNAXLzwgzL0AlGPi+tCCaDo2dsCD470Yvf8AlWjQi/MD1ZRSQZaAWUA6nUDZPeUMOwselFMgksbH2UKcdDFCT3Z1+T014DWoX+OLflTaqhB5BpOA+4qMmTlub1bDQUkGWXVaSrt2t0KBAIiNxPE/k6eM/O0fanPR30Jz2VBYcfOAg80PC1B0m53vP7oQDjp2F8V3qIBoCOgowSvd0MlOKIidPwf4vUHNob3/ANUI+AD0p95m6Mj41rWnHRo57pBtJehjRB4NgLH8C0lZIpJgnBa7So2JUwcKjHmlR1CgRI/h+h5p/qxNj+KmP6UyARmDI7UHlZNRlL3xPANmdTBDkpbcRr0bC0AgDII670Sw+EAFiVYvv/BLCyAkTZKkh661feS+p7lHyFaJLMWu8gORITJDqtQ0Rsn0yJ28/p+1HNRXO4oQ4ZpKSXCS486hpf8AxK756J90GwSrWoTN2K7TGbMyiZszzQGdMBGAMKCq1pwuQWvj0WjSm4P66bZS0SSBJy0TxQ4i/bB+SlV0A4DMsWpYi1kkpATkJKinGa1JwVpBztao2bV3llzDjypKMTROaoeLbJTJRASZWLUjSE5USiTIlASM4SVCJJRj+DBXFlMohIXh3MRRbzJJY1Y/LVIJ0EFSC1k4zBvRqaERSCt7onYLJTHUEYKQKjAoW2CnDLpywQURKtoGPDUEflAomSRzK8FhCWgxaWZpLoWZxYXi5roUAXwOaKAkgDO9fFbaNbAhwDJ5r21ONeLlYj6F50k8hDZL7G8KucaUlSqKaJjbU5tNBXOLEpRhiCAMZzS6pi8lB82eqS0aU+JX52jWIo1NCIpBW90TsFk/guMFJZBDCXLVInMAD0l70yAQjrYUQPUW2TrOD5RXyfFfCbKwcW6yUEWG9il/jXhnBozcJagJUhZKIII3ZYo/J6SYogkQzdJALeoZ5gFWIgA24+1Oamge0erik+2u/SIqa+M31pN65gK/ig/pJF+piBciJq/0cUhJ3wWPKizpa75Ikxsyv4glDAs5DEOx50ND+b5lLMkEi4aVM3hHtCCwQ5ZeaaBD0NlC15SpC2FWFEWQ7bc1OZxP9XCWlIgEBN2nBdRpEk4UmmQCiESyVYJuzY/BQEFxt2VRNzCF1Ar2PNaMfwY1dFzK1gO4I5Io0qYB27+hJpvupNLZgNFvbEGauakWMMgZi8cxEzUo0+xdhhF+F0pBtSUS1QWEkxrRlkmiJYkGZU22qXLlBuaDMSxMczFFnhMgDYFADa7toyw+FQBiQYttUZ9yBBZQvtRmr7CIZCVEYmM0INR4gmICGyZSn66UnYlELdBxnW8VBwtnshlC2AwQbzWfHyKLYIUliUnUqH5AyQZswCgwt5qVlIJhDhIgEyxkKSROkQ4rfN2jQTdBMNDRlBfNi2lXNSLGGQMxeOYiZ/j/AAm1GvRjuYtJGP6ajkAC6CBZVNP7pE1hQ23HkgaHccM2QhckusRbinkvWVGRUMaWokqBDlYEvNME3/QX2pz0RZl9dD91xMPt6uOkSiSjrSGLY51KNbpvEounN7Ut8Viuc2BETOKsSlLDaLjENpKToQ0LgwcUW/UB6WozJYhi6e1MsgauSBhBQ5hqWyWguByEZitGsV/hTdRqVNjQVCozF4JzahC2KGsYonUqboRV8XVy3VwAxwvVxInihIKUwVloWtjyox98+E2p++SGDyDVwHTcjsAUBGoDTzDUSAAgGwFoporZR/ITRn7AyWRBJOsV87s+1OaC1Ss19wH7rg4PZ0jo9I6PSOj0jo9Ip0oNqJcHIgnJR/BQIjINPvvw23jE/Hs+1OairCyj6jRQ0iB9jprTjoxeLYlAJYtiafidEYwUXUXJpwBdS1hIIjGtm1BR2jw5kEpsTUBAtMEZjcutG9NF+DdSGF0GKaruhmWYCwNWKat4EBMQioWxILtQ3QyYMIJlpAoaZcwJIN0kKzABmkXaMSJSYTROsU4o/EooY++Kz8o8Zn5Fv2pzU1CX81UeCJ7UsZpIiFkKZCLsdoOdKmZ8efZQgOJCeLyXLvKbtOX+M6Xovy0fBcxlhIqEQhAWwplUXxUo+UY3kaXS3NNwPd4ZEG/snNN5aUgywTSBRqxQ769ANYYcAnFRt4ATA7zMYqZEGIy2L51I2nCtzUNXkNeaImfeFOgIlKFN1gcmNYqacUFPIZ7f6ox98DOGDElOGa/87X/zNf8AxNf/ABNf/O1/8bWXU4vtFGPtTnobWxd7TUyMgTtSSj0W8KpzAOUoPMAAuqgDdUCgWWZJ723ufTRTBBpSyuIRHUR1pSy8mlKRMzYQcwO9ZkC5BtKq+bUI3v3gDE7FqUw7mczK5ZvMUQSayA3b1E8BUjrC5Tah5Iq+TNKBAwsFtopzwkjMsyJ1gKIEuFDdROxSCnBSoNswSi4TE3p3KQHCowaAGukUwUvSzb2E9hXaajjEMzBINzc1La0gQAsNEsnqNOKGolL2KMffA8h2FmJi4837Uy1lbrutGgoxr0YWhwgIkMm6xwZ+1OejCAhXCCIHcQfKgNMjpWBlExFI8bpcUyW8CBakUdx3JQ5iU5CkBEzNgGVkaLJm2aKSYZgE1spJNJjSgVcNJSymwQLqZN6jEucUH3AFrr0eLB7TokscxZvxSPC4A/hqNMnZv7pA4NlqTw1ca2NLwioQxRJaB7ojuhrRrjyrrsG62A1mKj3pV7rx5UTuSCmIkHdPKh2FUi0pICe9SCAXokGxtMUY/wCtc9HHSJSBF0SXmQ8LRweExzubNqAJnUYedDuaoAwx7iug13EypxsYD4EFR0gqCoOrVUALzIGrXN4jUru8ZDuI4dxrPzrky4HHlUNTQHDHFmvmIKKoCxCLo1VVpx0Mf9a56OOoB4SSOyXPKo7GaLTbMx50J24Ce7Lvr1cddaceBCZTfrnHzCeaclzRvaI/imDXk18t2tacdDH/AFrmo8EeCPpPy3hMf9a56OPA48DjwOPA48D0Mf8AWvRx4HHgceB8D4HoY/8AoW//2Q==" } }, "cell_type": "markdown", "metadata": {}, "source": [ "# Preprocessing\n", "## Introduction\n", "In this project, we present the demonstration of Advanced Urban Public Transportation System with two applications - automatic bus-stop detection and bus arrival time prediction. It includes the implementation of preprocessing steps to address the problem of GPS outage and unavailability of GPS. Further, we present an interactive implementation and demonstration of automatic bus-stop detection and bus arrival time prediction. The demonstration is based upon our work \"Advanced Urban Public Transportation System for Indian Scenarios\" [1].\n", "\n", "### System model\n", "\n", "![GenericArchitecture.jpg](attachment:GenericArchitecture.jpg)\n", "\n", "The system model consists of three modules 1) Bus module, 2) Server module, and 3) Commuter module. In the following, we describe these three modules.\n", "\n", "**Bus module** The bus module is implemented as an application installed in an Android operating system based smartphone carried in the bus. It publishes the real-time location of a bus periodically (every second) to a server through a publish-subscribe mechanism based Message Queuing Telemetry Transport (MQTT) broker.\n", "\n", "**Server module** The server module receives the real-time location updates of all the buses through the [*EMQ*](http://emqtt.io/) publish-subscribe broker. It applies the preprocessing steps to clean the data, stores the location data into *MongoDB* database, applies bus-stop detection algorithm, and arrival time prediction algorithm based on travel time estimates computed using historical trips.\n", "\n", "**Commuter module** The commuter module permits a commuter to subscribe for the real-time updates from one or more ongoing trips. The [MQTT messaging protocol](http://mqtt.org/) is used for all the interactions among commuter and server modules.\n", "\n", "In this project, we shall begin by preprocessing the bus location records collected using the bus module. Further, we will apply automatic bus-stop detection, travel time estimation, and bus arrival time prediction and develop an interactive demonstration of bus-stop detector and arrival time predictor. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Store raw location records into MongoDB" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "'''Import and initialize MongoClient'''\n", "from pymongo import MongoClient\n", "con = MongoClient()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Bound definition\n", "The data collection was performed on the college shuttle bus plying between ISCON, Ahmedabad and PDPU, Gandhinagar for morning and evening trips. The morning trip usually begins at *7:15 - 7:30* from ISCON towards PDPU. This direction is termed as ***North bound*** for our application. Likewise, the evening trip usually begins at *18:15 - 18:30* from PDPU towards ISCON and is termed as ***South bound*** direction for our application.\n", "\n", "We start with storing the raw location records (available in `.txt`) from the bus module into MongoDB database. By \"raw\" location records, we mean the location records are as they were stored in the bus module android application and we have not applied preprocessing on it. Three versions of bus module application were used for recording location traces with minor changes. In the first version `RawRecords`, the `time` was recorded in 'dd Month YYYY hh mm ss' string format (for eg: *8 Jan 2018 07:41:43*). Whereas in the second version `RawRecordEpoch`, the time was recorded in the [epoch format](https://en.wikipedia.org/wiki/Unix_time). and in the third version `RawRecordEpochSpeed`, the additional parameter `GPS Speed` was recorded. The raw location records corresponding to each version are stored separately in the folder corresponding to the version name.\n", "\n", "The location records file can contain one or more trip(s). Thus, before working with the location records, the records need to be separated as per the trips. The logic that we have used in our work is to check for the time difference of more than 30 min. between two consecutive records. If the time difference is more than 30 min., then they are considered as two different trips. The function `ReadLocationRecordsAndSeparateIntoSegement` reads the raw location records and separates the raw location records into different trip records using the above-mentioned logic.\n", "\n", "Subsequently, it saves the separated trips records into MongoDB with `dd_mm_yyyy__hh_mm_ss.RawRecords` as a collection name. Here dd_mm_yyyy__hh_mm_ss represents the start time of the trip and RawRecords indicates that the given collection is of raw location records. \n", "\n", "Further, status information related to every trip is maintained after every operation in `TripInfo` Collection. This is used at every stage to extract relevant records at each stage of execution." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "RouteName='Git_ISCON_PDPU'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If one has executed the current notebook and have created MongoDB database previously then the following code needs to be executed for creating the fresh MongoDB database" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'\\nIn the same way remove the Processed location record with GPS speed\\n'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'''\n", "Used for deleting the location record database from MongoDB \n", "in case one have created the database earlier by executing the below codes.'''\n", "#con.drop_database(RouteName)\n", "\n", "'''\n", "In the same way remove the Processed location record with GPS speed\n", "'''\n", "#import os\n", "#path = \"/\".join(os.getcwd().split('/')) + \"/LocationRecords/RawRecordEpochSpeedProcessed\"\n", "#for file in [f for f in os.listdir(path)]:\n", "# os.remove(path+\"/\"+file)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "\n", "sys.path.append(\"/\".join(os.getcwd().split('/')) +'/Codes/LibCodes')\n", "\n", "'''Import project specific library'''\n", "import ReadSeparateTripMongo\n", "\n", "path = \"/\".join(os.getcwd().split('/')) + \"/LocationRecords\"\n", "\n", "'''Read location records folders'''\n", "BusModuleVersion = [f for f in os.listdir(path) if '.md' not in f]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'\\nimport importlib\\nimportlib.reload(ReadSeparateTripMongo)\\n'" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'''For updating the lib changes effects'''\n", "'''\n", "import importlib\n", "importlib.reload(ReadSeparateTripMongo)\n", "'''" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reading file: ISCON_PDPU+1?29_01_2018_16_03_04.txt\n", "Reading file: ISCON_PDPU+1?07_02_2018_09_29_00\n", "Reading file: ISCON_PDPU+1?18_01_2018_07_38_10\n", "Reading file: ISCON_PDPU+1?22_12_2017_07_38_21\n", "Reading file: ISCON_PDPU+1?19_12_2017_18_41_16\n", "Reading file: ISCON_PDPU+1?08_01_2018_07_41_43\n", "Reading file: ISCON_PDPU+1?27_12_2017_07_55_49\n", "Reading file: ISCON_PDPU+1?12_02_2018_08_47_22.txt\n", "Reading file: ISCON_PDPU+1?15_02_2018_16_08_07.txt\n", "Reading file: ISCON_PDPU+1?21_02_2018_16_49_58.txt\n", "Reading file: ISCON_PDPU+1?23_03_2018_08_47_23\n", "Reading file: ISCON_PDPU+1?02_04_18_01_51_00\n", "Reading file: ISCON_PDPU+1?23_03_2018_08_47_22\n", "Reading file: ISCON_PDPU+1?14_02_2018_12_39_44.txt\n", "Reading file: ISCON_PDPU+1?22_02_2018_12_06_55.txt\n", "Reading file: ISCON_PDPU+1?12_02_2018_08_47_22.txt\n", "Reading file: ISCON_PDPU+1?15_02_2018_16_08_07.txt\n", "Reading file: ISCON_PDPU+1?21_02_2018_16_49_58.txt\n", "Reading file: ISCON_PDPU+1?23_03_2018_08_47_23\n", "Reading file: ISCON_PDPU+1?02_04_18_01_51_00\n", "Reading file: ISCON_PDPU+1?23_03_2018_08_47_22\n", "Reading file: ISCON_PDPU+1?14_02_2018_12_39_44.txt\n", "Reading file: ISCON_PDPU+1?22_02_2018_12_06_55.txt\n" ] } ], "source": [ "'''Read location records and separate them into trips. Subsequently store them into MongoDB'''\n", "for RecordType in BusModuleVersion:\n", " LocationRecordDir = '/'.join([path, RecordType])\n", " for fileName in [f for f in os.listdir(LocationRecordDir)]:\n", " \n", " if RecordType == 'RawRecordEpochSpeed':\n", " \n", " ReadSeparateTripMongo.HandlerForNALocation(fileName, \n", " LocationRecordDir, \n", " LocationRecordDir + 'Processed')\n", " \n", " ReadSeparateTripMongo.ReadLocationRecordsAndSeparateIntoSegement(RouteName,\n", " fileName,\n", " LocationRecordDir + 'Processed',\n", " RecordType)\n", "\n", " else:\n", " ReadSeparateTripMongo.ReadLocationRecordsAndSeparateIntoSegement(RouteName,\n", " fileName,\n", " LocationRecordDir,\n", " RecordType)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that `ReadSeparateTripMongo.HandlerForNALocation` and `ReadSeparateTripMongo.ReadLocationRecordsAndSeparateIntoSegement` are the project specific library function. One can find help related to project specific functions by executing `FunctionName?`. For instance, on executing the below cell, the help window related to function will pop-up. For further reference, one can also look the library code file in the LibCode directory as mentioned in the file field on executing the below cell." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "ReadSeparateTripMongo.ReadLocationRecordsAndSeparateIntoSegement?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## MongoDB Collection record and it's representation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us now look at the `Trip` collection record for one of the trip (let say trip: *29_12_2017__07_37_27*)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[{'_id': ObjectId('5da547d552d4e70f7c4d3f28'),\n", " 'SingleTripInfo': '29_12_2017__07_37_27',\n", " 'filteredLocationRecord': False,\n", " 'DBSCANOp': False,\n", " 'segments': -1,\n", " 'segmentsTimeStamp': []}]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[rec for rec in con[RouteName]['TripInfo'].find({'SingleTripInfo':'29_12_2017__07_37_27'})]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here, the keys represent the status of the operations applied on the location records. For instance, key `filteredLocationRecord` represents whether the given location records are filtered or not, `DBSCANOp` represents whether the DBSCAN based stoppage detection algorithm is applied on the collection records or not, `Segment` represents the number of segments in the location record, after applying interpolation and segmentation procedure. Concretely, the procedure segments the location record if it founds the GPS outage in the location record (the procedure is described in subsequent subsection). Likewise, `segmentsTimeStamp` determines the time stamp corresponding to segments in the location records to avoid GPS outage from consideration in all the subsequent procedures. Further, at different stages of modules, the status flags are computed for all the trips to keep the track of operation applied to a given trip. Subsequently, the modules extract the location record by querying the MongoDB collection *TripInfo* with the *status flag* values. For instance, to extract the trips on which filtering is not applied we would query MongoDB as follows:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "SingleTripsInfo = [rec['SingleTripInfo'] for rec in con[RouteName]['TripInfo'].find({'filteredLocationRecord': False})]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['29_01_2018__07_39_47', '30_01_2018__07_42_30', '01_02_2018__07_39_12', '02_02_2018__07_38_50', '18_01_2018__07_38_10', '19_01_2018__07_38_47', '22_01_2018__07_41_04', '22_12_2017__07_38_21', '22_12_2017__18_38_34', '26_12_2017__07_32_35', '19_12_2017__18_41_16', '20_12_2017__07_38_14', '20_12_2017__18_31_19', '21_12_2017__07_52_59', '08_01_2018__07_41_43', '08_01_2018__18_37_49', '09_01_2018__07_40_01', '27_12_2017__07_55_48', '29_12_2017__07_37_27', '01_01_2018__07_38_27', '12_02_2018__07_40_14', '14_02_2018__18_30_22', '15_02_2018__07_45_52', '15_02_2018__16_08_22', '15_02_2018__18_33_19', '16_02_2018__07_45_41', '19_02_2018__07_46_19', '20_02_2018__07_41_48', '20_02_2018__18_31_07', '21_02_2018__07_42_42', '13_03_2018__07_29_52', '14_03_2018__07_35_46', '20_03_2018__07_28_45', '28_03_2018__18_39_21', '21_03_2018__07_32_39', '21_03_2018__18_32_40', '22_03_2018__07_38_43', '14_02_2018__07_41_04', '21_02_2018__18_28_29', '22_02_2018__07_42_45', '12_02_2018__07_40_14', '14_02_2018__18_30_22', '15_02_2018__07_45_52', '15_02_2018__16_08_22', '15_02_2018__18_33_19', '16_02_2018__07_45_41', '19_02_2018__07_46_19', '20_02_2018__07_41_48', '20_02_2018__18_31_07', '21_02_2018__07_42_42', '13_03_2018__07_29_52', '14_03_2018__07_35_46', '20_03_2018__07_28_45', '28_03_2018__18_39_21', '21_03_2018__07_32_39', '21_03_2018__18_32_40', '22_03_2018__07_38_43', '14_02_2018__07_41_04', '21_02_2018__18_28_29', '22_02_2018__07_42_45']\n" ] } ], "source": [ "print(SingleTripsInfo)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us now look at the fields of collection record for a raw location record" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[{'_id': ObjectId('5da547ce52d4e70f7c4ce0ea'),\n", " 'epoch': 1517191787000.0,\n", " 'Longitude': 72.508215,\n", " 'Latitude': 23.03014,\n", " 'Accuracy': 6.599999904632568}]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[rec for rec in con[RouteName][SingleTripsInfo[0]+'.RawRecords'].find().limit(1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here,\n", "`_id` is the unique object id assigned by MongoDB, `Longitude`, `Latitude` corresponds to the location attributes and \n", "`Accuracy` is the accuracy of location record in meters" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Filtering" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have stored the location records in MongoDB collections, let us now look at the filtering preprocessing steps. We will remove the outlier location record from the trip records, and then apply segmentation and interpolation procedures to detect and handle GPS outage and unavailability. Concretely, we will interpolate the location records if the unavailability is for the smaller duration and smaller interval, else will separate the location records into different segments.\n", "\n", "### Outlier removal\n", "A given location record is considered as an outlier and removed if\n", "\n", "$$ ac > \\bar{ac} + 2 \\times \\sigma_{ac}$$\n", "\n", "where $\\bar{ac}$ and $\\sigma_{ac}$ is the mean and deviation of accuracy considering all the location records of a trip, respectively.\n", "\n", "### Segmentation and interpolation\n", "If the consecutive location records are separated by lesser duration ($<15$ seconds) or lesser distance ($<50$ m) then apply interpolation. Else, we separate the location records into different segments and update the information related to segment into the trip status information record of *TripInfo* collection.\n", "\n", "Note that we have extracted the trips for which filtering is not done using the code \n", "\n", "```python\n", "SingleTripsInfo = [rec['SingleTripInfo'] for rec in\n", " con[RouteName]['TripInfo'].find({'filteredLocationRecord': False})]\n", "```\n", "\n", "Now, we shall appy filtering into these *SingleTripsInfo*." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "import Preprocessing" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'For updating the lib changes effects'" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "'''For updating the lib changes effects'''\n", "#importlib.reload(Preprocessing)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Executing filtering on 29_01_2018__07_39_47\n", "Executing filtering on 30_01_2018__07_42_30\n", "Executing filtering on 01_02_2018__07_39_12\n", "Executing filtering on 02_02_2018__07_38_50\n", "Executing filtering on 18_01_2018__07_38_10\n", "Executing filtering on 19_01_2018__07_38_47\n", "Executing filtering on 22_01_2018__07_41_04\n", "Executing filtering on 22_12_2017__07_38_21\n", "Executing filtering on 22_12_2017__18_38_34\n", "Executing filtering on 26_12_2017__07_32_35\n", "Executing filtering on 19_12_2017__18_41_16\n", "Executing filtering on 20_12_2017__07_38_14\n", "Executing filtering on 20_12_2017__18_31_19\n", "Executing filtering on 21_12_2017__07_52_59\n", "Executing filtering on 08_01_2018__07_41_43\n", "Executing filtering on 08_01_2018__18_37_49\n", "Executing filtering on 09_01_2018__07_40_01\n", "Executing filtering on 27_12_2017__07_55_48\n", "Executing filtering on 29_12_2017__07_37_27\n", "Executing filtering on 01_01_2018__07_38_27\n", "Executing filtering on 12_02_2018__07_40_14\n", "Executing filtering on 14_02_2018__18_30_22\n", "Executing filtering on 15_02_2018__07_45_52\n", "Executing filtering on 15_02_2018__16_08_22\n", "Executing filtering on 15_02_2018__18_33_19\n", "Executing filtering on 16_02_2018__07_45_41\n", "Executing filtering on 19_02_2018__07_46_19\n", "Executing filtering on 20_02_2018__07_41_48\n", "Executing filtering on 20_02_2018__18_31_07\n", "Executing filtering on 21_02_2018__07_42_42\n", "Executing filtering on 13_03_2018__07_29_52\n", "Executing filtering on 14_03_2018__07_35_46\n", "Executing filtering on 20_03_2018__07_28_45\n", "Executing filtering on 28_03_2018__18_39_21\n", "Executing filtering on 21_03_2018__07_32_39\n", "Executing filtering on 21_03_2018__18_32_40\n", "Executing filtering on 22_03_2018__07_38_43\n", "Executing filtering on 14_02_2018__07_41_04\n", "Executing filtering on 21_02_2018__18_28_29\n", "Executing filtering on 22_02_2018__07_42_45\n", "Executing filtering on 12_02_2018__07_40_14\n", "Executing filtering on 14_02_2018__18_30_22\n", "Executing filtering on 15_02_2018__07_45_52\n", "Executing filtering on 15_02_2018__16_08_22\n", "Executing filtering on 15_02_2018__18_33_19\n", "Executing filtering on 16_02_2018__07_45_41\n", "Executing filtering on 19_02_2018__07_46_19\n", "Executing filtering on 20_02_2018__07_41_48\n", "Executing filtering on 20_02_2018__18_31_07\n", "Executing filtering on 21_02_2018__07_42_42\n", "Executing filtering on 13_03_2018__07_29_52\n", "Executing filtering on 14_03_2018__07_35_46\n", "Executing filtering on 20_03_2018__07_28_45\n", "Executing filtering on 28_03_2018__18_39_21\n", "Executing filtering on 21_03_2018__07_32_39\n", "Executing filtering on 21_03_2018__18_32_40\n", "Executing filtering on 22_03_2018__07_38_43\n", "Executing filtering on 14_02_2018__07_41_04\n", "Executing filtering on 21_02_2018__18_28_29\n", "Executing filtering on 22_02_2018__07_42_45\n" ] } ], "source": [ "for SingleTripInfo in SingleTripsInfo:\n", " Preprocessing.ApplyFiltering(RouteName,SingleTripInfo)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Besides applying the filtering procedure, the `Preprocessing.ApplyFiltering` computes the relative standard deviation of the location records and starting hour of the trip. Further, it updates the segmentation information, mean and standard deviation accuracy of the location records, trip starting hour in the collection record of a trip in the *TripInfo* collection. For instance, let us now look at the Trip collection record for one of the trip (let say trip: 29_12_2017__07_37_27) as we did earlier." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[{'_id': ObjectId('5da547d552d4e70f7c4d3f28'),\n", " 'SingleTripInfo': '29_12_2017__07_37_27',\n", " 'filteredLocationRecord': True,\n", " 'DBSCANOp': False,\n", " 'segments': 3,\n", " 'segmentsTimeStamp': [[1514513265000.0, 1514513272000.0],\n", " [1514513294000.0, 1514516030000.0],\n", " [1514516107000.0, 1514516189000.0]],\n", " 'RelativeSTDAccuracy': 10.19637724205251,\n", " 'TripStartHour': '07',\n", " 'meanAccuracy': 4.13410543598751,\n", " 'stdAccuracy': 0.42152898583748616}]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "[rec for rec in con[RouteName]['TripInfo'].find({'SingleTripInfo':'29_12_2017__07_37_27'})]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One may change the trip (i.e. *29_12_2017__07_37_27*) and replace it with any of the other trips of the `SingleTripsInfo` for displaying the corresponding status of the selected trip. \n", "\n", "We would like to draw the attention of readers to the fields of the *TripInfo* collection record. The `Preprocessing.ApplyFiltering` has updated the field `filteredLocationRecord` to **True**, as it has applied the filtering process on a trip. Likewise, the other fields have also updated with the computed values." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## References\n", "[1] P. Rajput, M. Chaturvedi, and P. Patel, “Advanced urban public transportation system for indian scenarios,” in Proceedings of the 20th International Conference on Distributed Computing and Networking, ICDCN , India, January 04-07, 2019, 2019, pp. 327–336. doi: [10.1145/3288599.3288624](https://dl.acm.org/citation.cfm?id=3288624)." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }